
TOP CROSS SECTION ���
WITH EVENT CLASSIFIER BASED ON SUPPORT VECTOR

MACHINES	

Ben Whitehouse*, Krzysztof Sliwa	

Tufts University	

Department of Physics and Astronomy	

Medford, Massachusetts 02155, USA	

ATLAS Top Mass Meeting, CERN, 22 October, 2010	

*Ben has just defended his Ph.D. and is looking for a job	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Task	

Lσ=N

)(1
ε

θ
σ

NN tttt
tt LL

==

sample in the ofamount fractional theis ttttθ
and is what we will determine with the SVM

acceptancecut selection for adjusts ε

Channel Jets Lepton in the decays Identify +tt

2	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Main Idea	

Measure ttbar cross section in the L+J channel	

Use a MultiClass SVM procedure to tell Signal from Backgrounds	

	
3 SVMs are used together as a system	

Include btag info in pretag L+J sample to improve discrimination	

Results should at the same provide information about	

	
heavy flavor content of BG (W+bb vs W+lf, etc) 	

3	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines	

Take N training points

{(x1, y1),(x2, y2),…,(xN, yN)}
xi = vector that describes “features”

yi = {-1,+1} describes class

bxwxf −⋅=
)(

We want to create a classifying function
with the form:

Machine Learning via Hyper-plane Separation

that maximizes the margin d
between classes

4	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines	

Support Vector Machine (SVM) is a learning algorithm developed a part of Vapnik-
Chervonenkis theory in 1989. The soft-margin SVM variation used currently was
proposed by Vapnik and Cortes in 1995.	

A data point can be viewed as a N-dimensional vector (a list of N numbers), and we
can separate such points with a N − 1-dimensional hyperplane we have defined a
linear classifier. 	

A support vector machine is a binary, linear, classifier which decides which of the two
possible classes of events the input event belongs to. Given two sets of learning
samples, SVM constructs a hyperplane in a high or infinite dimensional space which
can be used for classification of the input events into two possible classes. 	

5	

N=1 case	

in a linear case a separating hyperplane can be found, it is a point *
(1-1=0-D “hyperplane”)	

0	 0	 	 0	 	 	 0	 	 	 0	 	 	 	 0	 	 	 	 0	 	 	 	 	 0	 	 	 	 	 0	 	 	 	 0	 	 	 	 0	 	 	 	 0	 	 	 *	 	 X	 	 X	 	 X	 	 	 	 X	 	 	 	 	 X	 	 	 	 X	 	 	 	 	 	 X	 	 	 	 X	 	 	 	 	 X	 	 	 	 	 	 	 	

Support Vector Machines	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines	

If the two sets to be discriminated are not linearly separable in the original
space, the original finite dimensional space is mapped into a much higher
dimensional (or even infinite dimensional) space in which the problem is
linearly separable	

7	

N=1 case	

in a non-linear case a separating hyperplane cannot be found	

– X	 	 	 X	 	 	 X	 	 	 X	 X	 	 	 X	 	 X	 	 	 	 X	 	 	 X	 	 	 X	 0	 	 	 	 0	 	 0	 	 0	 	 	 0	 	 	 	 0	 	 X	 	 X	 	 X	 	 	 	 X	 	 	 	 	 X	 	 	 	 X	 	 	 	 	 	 X	 	 	 	 X	 	 	 	 	 	 	 	 	 	

Support Vector Machines	

One can map Θ from 1-D space to 2-D space and
then a separating hyperplane can be found, a line in
this case (2-1=1-D “hyperplane”)	

– X	 	 	 X	 	 	 X	 	 	 X	 X	 	 	 X	 	 X	 	 	 	 X	 	 	 X	 	 	 X	 0	 	 	 	 0	 	 0	 	 0	 	 	 0	 	 	 	 0	 	 X	 	 X	 	 X	 	 	 	 X	 	 	 	 	 X	 	 	 	 X	 	 	 	 	 	 X	 	 	 	 X	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X	 	 	 	 0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 	 0	 	

Θ	

Support Vector Machines	

Here, one can map Φ from 2-D space to 3-D space
and then a separating hyperplane can be found, in this
case is a plane (3-1=2-D “hyperplane”)	

Support Vector Machines	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines	

Take N training points	

{(x1, y1),(x2, y2),…,(xN, yN)} 	

xi = vector that describes “features”	

yi = {-1,+1} describes class 	

bxwxf −⋅=
)(

We want to create a classifying function
with the form: 	

Machine Learning via Hyper-plane Separation	

that maximizes the margin d 	

between the two classes of points	

11	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines (dual representation)	

∑
=

=
N

i
iii xyw

1

α

bxwxf −⋅=
)(

Machine Learning via Hyper-plane Separation	

Only vectors at the margin get non-zero alpha	

	
These are the “support vectors”	

	
they hold up the hyper-plane	

12	

Solution is a linear combination of	

training points 	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines (dual representation)	

One can re-write the decision function as:	

13	

€

€

€ €

€

f (x) =
 w • x − b = α i∑ yi(

 x i •
 x) − b

In the dual representation data appears ONLY through inner products 	

(scalar products) both in training and in the classifying function	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines	

To define a separating hyperplane one needs to be able to calculate the inner (scalar)
products. It turns out that one DOES NOT need to know the details of the mapping
from the original space (in which the problem is nonlinear) into the higher
dimensional space (in which the problem becomes linear). 	

The “Kernel trick” (based on Mercer’s theorem 1909) allows to express the needed
inner products in the higher dimensional space through the real valued kernel function
which is evaluated in the original (lower dimensional) space.	

€

K(x 1,
 x 2) =Θ(x 1) •Θ(x 2)

€

14	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Support Vector Machines	

∑
=

=
N

i
iii xyw

1

α

bxwxf −⋅=
)(

Machine Learning via Hyper-plane Separation	

e ji xx
ji xxK

22 2/||||),(σ
 −−

=

Only vectors at the margin get non-zero alpha	

	
These are the “support vectors”	

	
they hold up the hyper-plane	

15	

We used a Gaussian kernel function.	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Method	

Use data through P13 (2.2 fb-1)	

3 Classes (equals 3 SVMs used in conjunction):	

	
Signal (ttbar)	

	
Light BG (W+lf, W+c,W+cc)	

	
Heavy BG (W+bb)	

Gradient to investigate what features matter	

Updated Systematics	

	
update ISR/FSR	

	
update Herwig	

	
W+Jets Q2	

	
b-tag SF	

QCD Templates
16	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

20 Features	

Lepton E, Px, Py, Pz	

Missing Et and Phi	

Fox-Wolfram Moments (first 5)	

Sum Jets Et, E, Px, Py, Pz	

HT	

Two Eigenvalues from Normalized Momentum Tensor

Number Positive SecVtx tags

Kinematic
b-tagging

17	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Gradient for Feature Ranking 	

An evaluation of the
Gradient can be used to
get a feel for what features
of the SVM are important
in discrimination.	

Here, a grad of (1,0)
shows x is important,
while y is not so much.

y

x

grad

18	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Gradient for Feature Ranking 	

The gradient of the SVM hyper-plane is given by

19	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Gradient for Feature Ranking 	

MEt MEt
f

lep
E

lep
Px

lep
Py

lep
Pz
FW1FW2FW3FW4FW5 jet

Et
jet
E

jet
Px

jet
Py

jet
Pz

HT low
Pij

high
Pij
SecVtx

- 5

0

5

10

15

MEt
MEt
f

lep
E

lep
Px

lep
Py

lep
Pz FW1FW2FW3FW4FW5

jet
Et

jet
E

jet
Px

jet
Py

jet
Pz HT

low
Pij

high
Pij SecVtx

Signal vs Light
SVM

20	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Gradient for Feature Ranking 	

MEt MEt
f

lep
E

lep
Px

lep
Py

lep
Pz
FW1FW2FW3FW4FW5 jet

Et
jet
E

jet
Px

jet
Py

jet
Pz

HT low
Pij

high
Pij
SecVtx

- 5

0

5

10

15

MEt
MEt
f

lep
E

lep
Px

lep
Py

lep
Pz FW1FW2FW3FW4FW5

jet
Et

jet
E

jet
Px

jet
Py

jet
Pz HT

low
Pij

high
Pij SecVtx

MEt MEt
f

lep
E

lep
Px

lep
Py

lep
Pz
FW1FW2FW3FW4FW5 jet

Et
jet
E

jet
Px

jet
Py

jet
Pz

HT low
Pij

high
Pij
SecVtx

- 6

- 4

- 2

0

2

4

MEt
MEt
f

lep
E

lep
Px

lep
Py

lep
Pz FW1FW2FW3FW4FW5

jet
Et

jet
E

jet
Px

jet
Py

jet
Pz HT

low
Pij

high
Pij SecVtx

MEt MEt
f

lep
E

lep
Px

lep
Py

lep
Pz
FW1FW2FW3FW4FW5 jet

Et
jet
E

jet
Px

jet
Py

jet
Pz

HT low
Pij

high
Pij
SecVtx

- 20

- 15

- 10

- 5

0

MEt
MEt
f

lep
E

lep
Px

lep
Py

lep
Pz FW1FW2FW3FW4FW5

jet
Et

jet
E

jet
Px

jet
Py

jet
Pz HT

low
Pij

high
Pij SecVtx

This is an average of the
gradient, sampled in the ttbar
region of the feature space.

S vs L

L vs H

S vs H

21	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

MEt MEt
f

lep
E

lep
Px

lep
Py

lep
Pz

FW1FW2 FW3 FW4 FW5 jet
Et

jet
E

jet
Px

jet
Py

jet
Pz

HT low
Pij

high
Pij

- 2

0

2

4

MEt
MEt
f

lep
E

lep
Px

lep
Py

lep
Pz FW1FW2 FW3 FW4 FW5

jet
Et

jet
E

jet
Px

jet
Py

jet
Pz HT

low
Pij

high
Pij

Gradient for Feature Ranking 	

MEt MEt
f

lep
E

lep
Px

lep
Py

lep
Pz

FW1FW2 FW3 FW4 FW5 jet
Et

jet
E

jet
Px

jet
Py

jet
Pz

HT low
Pij

high
Pij

- 2

- 1

0

1

2

3

4
MEt

MEt
f

lep
E

lep
Px

lep
Py

lep
Pz FW1FW2 FW3 FW4 FW5

jet
Et

jet
E

jet
Px

jet
Py

jet
Pz HT

low
Pij

high
Pij

MEt MEt
f

lep
E

lep
Px

lep
Py

lep
Pz

FW1FW2 FW3 FW4 FW5 jet
Et

jet
E

jet
Px

jet
Py

jet
Pz

HT low
Pij

high
Pij

- 3

- 2

- 1

0

1

2

3

MEt
MEt
f

lep
E

lep
Px

lep
Py

lep
Pz FW1FW2 FW3 FW4 FW5

jet
Et

jet
E

jet
Px

jet
Py

jet
Pz HT

low
Pij

high
Pij

This is the same done on the
Kinematic only SVMs

L vs H

S vs L

S vs H

22	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

MultiClass Response	

Shows overall output from the 3 SVMs	

Light and Heavy are composed of	

sub-processes added by cross section

Signal
Light
Heavy

-6 -4 -2 2 4 6 8

0.1

0.2

0.3

0.4

-6 -4 -2 2 4 6 8

0.1

0.2

0.3

0.4

-6 -4 -2 2 4 6 8

2

4

6

8

10

Signal vs Heavy Light vs Heavy

Signal vs Light

23	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

HOW TO SEPARATE MORE THAN 2 CLASSES? 	

•  USE PAIR-WISE COUPLING (needs K=(N-1)N/2 (3 SVM in our case)	

•  FEATURE SPACE	

A direct way of determining the separation ability of the SVM system is to project
data points in the problem’s feature space, and then examine how the different data
classes are distributed in this space. After finding an orthonormal basis in the
feature space, one can map the classifiying (decision) functions for all thee SVM in
the feature space. One can easily see how well the separation between the 3 classes
of events is.	

Signal
Light
Heavy

24	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

MultiClass PDFs	

3D Histograms used to create templates	

http://tuhept.phy.tufts.edu/~ben/talk1.html

Signal
Light
Heavy

25	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

Results: excellent classifier	

26	

ATLAS Top Mass Meeting, CERN, 22 October 2010	

plans for svm analyses in ATLAS	

The entire machinery can be applied in a straightforward fashion to the	

lepton+jets in ATLAS, the only question is the availability of MC
background samples which describe the real data well, this can wait a bit
for tuning and validation	

The same method could be also applied to the di-lepton final state, of
course a set of features would have to modified	

Chapter 2 on SVM from Ben’s Thesis as attached in the end, the entire
thesis is available at: 	

http://tuhept.phy.tufts.edu/~sliwa/cdf10280_svmThesis.pdf	

27	

Chapter 2

The Support Vector Machine

The overall idea for the Support Vector Machine was put forth by Vladimir Vapnik[20]

in the 1990s. Using labeled training data as a basis, the SVM methodology attempts

to calculate the optimal separating hyperplane between the two classes of data under

consideration. In order to tell apart apples from oranges, one might consider any

number of descriptive, quantifiable features of these two objects. Color, texture, size,

lifetime, ripening time, seed content, skin width, shape, density, mass, etc. can all

be assembled in a vector of values used to describe an apple or an orange. Given a

labeled handful of these vectors, the SVM formalism computes a separating hyperplane

that attempts to place all the apples on one side and all oranges on the other. The

purpose of this chapter is to set forth the theory behind Support Vector Machines,

point out some of their interesting properties, and show how they can be applied to

larger classification problems.

2.1 The Basics

Suppose that we define a vector of real numbers, where each dimension represents some

characteristic of the subject we wish to study. The N dimensions of this vector are

known as features. Let us define

#»x ≡ {x1, x2, . . . , xN} (2.1)

y ≡ ±1

11

12 CHAPTER 2. THE SUPPORT VECTOR MACHINE

We also need a way to distinguish between the two classes of data. We will use the

convention that every data point is specified by its vector #»x , and its class y when this

information is available.

Imagine we are given some number of events whose class is known. Some of the

points belong to the y = +1 class, and others to the y = −1 class. Suppose we plot

these vectors in real N dimensional space in the normal way. Our task is to then use

these event vectors to find a separating hyper-plane between the points with y = +1

and y = −1. For vectors with only 2 features, consider Figure 2.1. As can be seen,

it is necessary to establish a way to uniquely define the plane of separation. The

method that is chosen is to find the plane that separates the two classes of points with

the widest margin. Figure 2.2 defines the geometry of the situation in a two feature

problem.

Figure 2.1: Many planes could potentially separate our data.

For an N dimensional space, the equation of a hyper-plane in that space is given

by:

f(#»x) = #»w · #»x − b (2.2)

where #»w is a vector normal to the plane, and b is a real number that offsets the plane’s

2.1. THE BASICS 13

r

d

H

H1

H2

Figure 2.2: 2D SVM Geometry

position from the origin. Once #»w and b have been determined, this expression becomes

the learned function. After computing f(#»a) on some vector of unknown class, the sign

of f(#»a) can be our guess as to which class #»a belongs.

Looking more closely at the learned function, we see that the perpendicular distance r

from the plane to a point #»z is given by

r =
#»w · #»z − b

| #»w| (2.3)

A further step needs to be taken to set the overall scale for the problem. This is

because there are an infinite number of vectors #»w that give the same orientation for the

plane. We could simply constrain #»w to be a unit vector. However, a more convenient

method for our future calculations is simply to compute #»w such that the value of the

learned function is ±1 at the margin. This fixes the scale, and the overall width of the

margin is then

14 CHAPTER 2. THE SUPPORT VECTOR MACHINE

d =
2

| #»w| (2.4)

This quantity is clearly maximized if we minimize the length of #»w . To be clear,

we have now totally specified our geometry. #»w’s direction gives the orientation of the

separating hyperplane, b displaces it from the origin to its proper absolute position, and
#»w’s magnitude sets the width of the margin (i.e. the density of the contours parallel

to the hyper-plane).

In order to ensure that no data points invade the margin, we also require the

following linear constraints on each of the N training points under consideration.

yi(
#»w · #»xi − b) ≥ 1 (2.5)

Putting everything together, we can assemble a Lagrangian to minimize for this

problem.

L =
1

2
#»w · #»w −

N
∑

i=1

αiyi(
#»w · #»xi − b) +

N
∑

i=1

αi (2.6)

The first term maximizes the margin, and the subsequent N terms ensure the

separation of the two classes in our training set. Notice the use of Lagrange multipliers

(α′
is ≥ 0) to enforce these linear constraints. This approach is common in solving

quadratic optimization problems such as we have here. A dual Lagrangian can be

constructed by taking the partial derivatives with respect to the primal variables #»w

and b and noting they are zero at optimality. This leads to the following relations

∂L

∂ #»w
= 0 ⇒ #»w =

N
∑

i=1

αiyi
#»xi (2.7)

∂L

∂b
= 0 ⇒

N
∑

i=1

αiyi = 0 (2.8)

Substituting these back into our original Lagrangian, we get the dual Lagrangian

LD =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj
#»xi · #»xj (2.9)

This formulates our problem entirely in terms of the α’s. Once the α’s are known, we

can recover #»w through the relation (2.7) above, and b from the fact that

2.2. MECHANICAL ANALOGY 15

b = #»w · #»xk − yk (2.10)

for any training vector k, as long as its corresponding αk 6= 0. Using our new formula-

tion we can re-express the learned function in terms of the α’s.

f(#»z) =
N
∑

i=1

αiyi
#»xi · #»z − b (2.11)

The important thing to note here is that our learned function depends only on those

training points #»xi which have an αi 6= 0. Training points that meet this requirement are

known as the Support Vectors, as they are the vectors that hold up the decision plane.

Only support vectors, along with their associated Lagrange multipliers, are needed to

reconstruct the decision plane. All other training points are ignorable. Also, notice

that the learned function only depends on the inner product between training points

and the test point #»z . We will return to this later when considering non-linear decision

surfaces.

2.2 Mechanical Analogy

An interesting interpretation of the formulation of the Support Vector Machine reveals

it to have an exact physical analog. The support vectors can be viewed as exerting a

positive or negative force on the decision boundary, and the solution in which we find

the best separating hyper-plane is exactly that which provides mechanical equilibrium.

In other words, all we are requiring is that the sum of all the forces and torques net

zero at optimality. This view can be helpful in getting a handle on what actually is

happening when a SVM is optimized. It can be useful to think about how certain

points “push around” the decision boundary.

To illustrate this point, let’s associate a force
#»

F i with each support vector. We will

take

#»

F i = −yiαiŵ (2.12)

Here, ŵ is simply a unit vector in the direction of #»w, defined as ŵ =
#»w
| #»w | . Recall from

Equation (2.2) that ŵ gives the orientation of the hyper-plane. In fact, ŵ is normal to

the hyper-plane’s surface. Therefore, Equation (2.12) associates a force normal to the

hyper-plane which points inwards toward the zero contour of the decision surface. The

16 CHAPTER 2. THE SUPPORT VECTOR MACHINE

magnitude of the force is proportional to the size of that vector’s Lagrange multiplier

αi. The requirements for mechanical equilibrium are as follows:

SV s
∑

i

#»

F i = 0 (2.13)

SV s
∑

i

#»x i ×
#»

F i = 0 (2.14)

Using Equations (2.7) and (2.8), we see that these conditions hold.

SV s
∑

i

#»

F i =
SV s
∑

i

−yiαiŵ = −ŵ
SV s
∑

i

yiαi = 0 (2.15)

SV s
∑

i

#»x i ×
#»

F i =
SV s
∑

i

#»x i × (−yiαi)ŵ =
SV s
∑

i

(−yiαi)
#»x i × ŵ = − #»w × ŵ = 0 (2.16)

2.3 Soft Margin

Sometimes, it happens that a problem is not perfectly separable. Imagine there is

some noise in the problem, or that some points in the training sample are mislabeled.

To accommodate this kind of situation, our problem can be reformulated to allow

some points to invade the margin. However, we will penalize these points in order

to discourage their occurrence. To relax the margin constraints, we modify Equation

(2.5) to read

yi(
#»w · #»xi − b) ≥ 1− ξi

ξi ≥ 0
(2.17)

These free parameters ξi allow individual points to enter the margin. However, if

we don’t suppress this behavior in some manner, then the trivial solution where all the

points fall into the margin will result. So, we modify the Lagrangian as follows:

L =
1

2
#»w · #»w + C

N
∑

i=1

ξi −
N
∑

i=1

αiyi(
#»w · #»xi − b) +

N
∑

i=1

αi(1− ξi) (2.18)

2.3. SOFT MARGIN 17

The second term in (2.18) involving C is the penalty term. Since we are minimizing

L , and both C and the ξi’s are taken to be non-negative, this term will tend to cap

the error. It is instructive to view the Lagrangian rearranged like this:

L =
1

2
#»w · #»w −

N
∑

i=1

αiyi(
#»w · #»xi − b) +

N
∑

i=1

αi +
N
∑

i=1

ξi(C − αi) (2.19)

Equation (2.19) has exactly the same form as (2.6), except for the last term that

isolates ξ. In order to constrain L , we note what happens to the objective function

when α’s are allowed to grow larger then C. In that case, the sum in the last term can

be driven to −∞ by letting the ξ’s become arbitrarily large. To avoid this situation,

we require that the α’s are bound within the range 0 ≤ αi ≤ C. This result follows

naturally by taking

∂L

∂ξi
= 0 ⇒ αi = C (2.20)

for any ξi that exists (that is ξi > 0). A very convenient by-product of applying

this constraint is that it eliminates the last term in (2.19)! We are left with exactly

Equation (2.6), and the rest of the solution follows as before. Equations (2.7) and (2.8)

are the same, as is the dual LD in (2.9). We are solving exactly the same problem as

previously, except we have restricted the range of the Lagrange multipliers. We have

a new free parameter C that controls the rigidity of the margin. To summarize, the

problem we are solving is

LD =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj
#»xi · #»xj

0 ≤ αi ≤ C

N
∑

i=1

αiyi = 0

(2.21)

Note that there is also a formulation that fixes the overall invasion “length” by

placing an upper bound on the sum of the ξ variables. This is in contrast to the

method just outlined which limits the individual penetration of the given training

points, but places no bound on the number of points which invade the margin.

18 CHAPTER 2. THE SUPPORT VECTOR MACHINE

2.4 Non-linear Solutions

Up to this point, we have shown how to find the best separating hyper-plane for a

given set of training data. However, the hyper-plane we have constructed exists in the

same space as the data points, or what is known as the feature space. One drawback to

this situation is that it may not be possible to find a separating plane for the problem

we would like to solve. It would be nice if we were able to carry our support vector

formalism over to such problems that only have non-linear solutions. This can be

accomplished if we map our original space into some other feature space of higher

dimensionality. The hyper-plane can then be constructed in this higher dimensional

space where the problem is linearly separable.

Figure 2.3: Mapping problem into higher dimensional space

Notice that in Equations (2.21) and (2.11) the training vectors #»xi only enter the

calculations when being dotted into another #»xj. If we were to actually do a mapping

on the original vectors #»xi ⇒ ϕ(#»xi), the only expressions that show up in the training

procedure are of the form ϕ(#»xi) ·ϕ(#»xj). Therefore, as long as we can carry out the dot

products in the higher dimensional space, we need not know the exact details of the

mapping function ϕ.

It turns out that there is a whole class of functions, known as kernel functions,

which are dot products in some multi-dimensional space. In fact, any positive semi-

definite function that can be shown to have the form given in (2.22) is a kernel function.

Equations (2.23) through (2.26) are some example kernel functions:

K(#»xi,
#»xj) ≡ ϕ(#»xi) · ϕ(#»xj) (2.22)

2.4. NON-LINEAR SOLUTIONS 19

K(#»xi,
#»xj) =

#»xi · #»xj (2.23)

K(#»xi,
#»xj) = (1 + #»xi · #»xj)

p (2.24)

K(#»xi,
#»xj) = tanh(β0

#»xi · #»xj + β1) (2.25)

K(#»xi,
#»xj) = e

−| #»xi−
#»xj |

2

2σ2 (2.26)

All we have to do in order to apply SVMs to non-linear problems is to replace

everywhere we see #»xi · #»xj with some suitable kernel function K(#»xi,
#»xj). The function

given in (2.26) will be the one we employ. It’s known as the Gaussian kernel, and

has been shown to give good performance over a variety of different problems. It has

one free parameter, σ, which controls the width of the Gaussian function. Its value

should be chosen to be of roughly the same magnitude as the length of your training

vectors. The actual value should be determined through an empirical study of different

trainings on your specific problem in order to optimize the SVM’s performance. As a

general rule, σ determines how flexible the learned function’s contours can become in

the problem’s unmapped feature space. The larger the magnitude of σ, the more rigid

(less bendy) the contours. In fact, the Gaussian kernel function tends toward the linear

kernel (i.e. Equation (2.23)) as σ tends toward ∞. If σ is taken to be too small, the

SVM will simply “memorize” your training set and not generalize well.

Figure 2.4: Linear and non-linear problems

20 CHAPTER 2. THE SUPPORT VECTOR MACHINE

2.5 Feature Ranking & Reduction

Another interesting property of the SVM formalism is that the learned function de-

scribes a geometrical space which, in and of itself, can be analyzed. This provides

additional information above and beyond the simple binary answers derived from the

learned function’s sign. One piece of information which can be very insightful in ana-

lyzing a classification problem is a ranking of the features from most to least relevant.

In a SVM, each of the features is represented by one of the dimensions in the space

defined by the learned function. The most straightforward way to achieve this ranking

is by taking the gradient of the learned function (in its d dimensions). By then sampling

the gradient at different points, a numerical ordering of the most relevant features can

be found. Recall, the learned function is defined as

f(#»z) =
N
∑

i=1

αiyiK(#»xi,
#»z)− b (2.27)

For a Gaussian kernel function, this becomes

f(#»z) =
N
∑

i=1

αiyie
−| #»xi−

#»z |2

2σ2 − b (2.28)

Note that the sum index i in this context runs over the N support vectors. Thus #»x i

refers to the ith support vector, and not the ith dimension of #»x . The jth component of

the gradient (
#»∇f)j is then given by

(
#»∇f)j =

∂

∂zj
f

N
∑

i=1

αiyie
−| #»xi−

#»z |2

2σ2 =
N
∑

i=1

αiyie
−(#»xi1−z1)

2−(#»xi2−z2)
2−...−(#»xij−zj)

2−...−(#»xid−zd)
2

2σ2

⇒ (
#»∇f)j =

N
∑

i=1

αiyi
σ2

(#»xij − zj)e
−| #»xi−

#»z |2

2σ2 (2.29)

where by #»xij it is meant the jth component of the ith support vector.

For completeness, the gradient for a linear kernel is

2.5. FEATURE RANKING & REDUCTION 21

f(#»z) =
N
∑

i=1

αiyi
#»xi · #»z − b

(
#»∇f)j =

N
∑

i=1

αiyi
#»xij (2.30)

To see why this method works, consider a simple two dimensional problem and

a linear SVM. The decision plane and the margin define a surface of constant slope

and orientation. The gradient in this situation is then a constant vector in some

direction which is normal to the decision plane. Now, if one of the dimensions (features)

turns out to be completely irrelevant to our decision, then our problem was really one

dimensional. In this case we would find a decision plane parallel to the ignorable

dimension, and a gradient pointing along the dimension that matters. Extended over

many dimensions, the same general behavior still holds. The gradient points in the

direction of the most relevant features, and is weighted in proportion to the pertinence

each feature has with respect to the decision. See Figure 2.5 below.

Figure 2.5: Using the gradient to rank features

In the non-linear case, the gradient varies from point to point in the decision space.

To cope with this situation, we take the average of the gradient for some appropriate

number of test points in the area of interest. This may have some drawbacks, as the

averaging might wash out over a feature that is positively and negatively correlated

over the test sample in different regimes. However, as an intuitive tool, the gradient is

22 CHAPTER 2. THE SUPPORT VECTOR MACHINE

a very nice way to gain confidence in your classifier’s behavior and to better understand

the dataset.

2.6 Implementation

To create a functional Support Vector Machine, it is required to solve the quadratic

optimization problem given in Equation (2.21) with the appropriate kernel function

included. The SVMs used in this thesis were implemented by the author and Jacob

Borgman in C++. The implementation we used is based upon the improvements to

Platt’s Sequential Minimal Optimization (SMO) [30] method proposed by Keerthi, et

al. [29]. This implementation was found to be faster than general quadratic optimiza-

tion software, and other existing SVM implementations.

