

Krzysztof Sliwa Tufts University

Tufts Colloquium, May 3rd, 2013

Outline

• PHYSICS PROGRAM AT THE LHC

- test the Standard Model, hopefully find "physics beyond SM"
- find clues to the EWK symmetry breaking Higgs(ses)?

 what has and what has NOT changed after a Higgs-like boson at ~125 GeV was found by ATLAS and CMS in 2012?

- Standard Model
- ATLAS exploratory experiment with multipurpose detector to study pp collisions at LHC at highest energies possible:
 - 7 TeV in 2011, 8 TeV in 2012, ~13 TeV from April 2015...
- Selected ATLAS results
- Summary of CMS results
- what it all means?
- FUTURE plans?

what is elementary particle physics ?

science trying to find answers to a few fundamental questions:

what is the world made of?

how does the world work?

what is world?

Tufts Colloquium, May 3rd, 2013

classical physicist's view of the world

Standard Model view of the world

•Forces

•quantum gauge fields

Tufts Colloquium, May 3rd, 2013

Path to Standard Model: Minkowski space-time

- Special Theory of Relativity Einstein in 1905
- Minkowski 1907: interpreted Einstein's Special Relativity (1905) a consequence of time and space being an unseparable 4-dimensional space-time entity ("world") time and space no longer absolute because of the finite, and the same for all observers, speed of propagation of light or any signal

Lorentz boosts = rotations in 4dim "world" or space-time which mix time and space coordinates - like rotation about z axis mixes x and y coordinates (in 3dim Euclidean space)

Path to Standard Model: General Relativity

 General Theory of relativity Einstein 1907-1915 – a new relativistic and geometric theory of gravity: matter tells spacetime how to curve, and curved spacetime tells matter how to move" (Wheeler)

Path to Standard Model: early attempts at Unification

• 1918 Weyl's theory of gravitation and electricity, he introduced the term gauge invariance; unification was unsuccessful; however, his idea applied to quantum mechanic became what we now call gauge theories (complex scale factor rather than real)

• 1921 Kaluza and Klein suggested that gravitation and electricity can be unified in a theory of gravity in 5-dimensional Riemannian geometry; not much support, mainly because it was introducing new dimension (Ockham's razor principle)

Path to Standard Model: Quantum Mechanics

 PHYSICS ON ATOMIC SCALE IS GOVERNED BY QUANTUM MECHANICS - no longer completely deterministic as in classical physics (Feynman : nobody understands quantum mechanics)

at the heart of QM – noncommutativity of algebra of operators corresponding to phase space coordinates - momentum and position (Heisenberg algebra)

 periodicity of chemical elements is a quantum effect observable on macroscopic scale (periodicty of elements in the Mendeleev table) In 1918 Emmy Noether, while working with David Hilbert and Felix Klein in Gottingen, proved two theorems (for finite continuous groups and infinite continuous groups) which are the foundations of the modern (XXth century) physics. The theorems are collectively known as "Noether's theorem"

Informally, Noether's theorem says:

symmetry <=> conservation law

Symmetries of space-time

energy is conserved if and only if (iff) the physical laws are invariant under time translations (if the form of physics laws do not depend on time)

linear momentum is conserved only iff the physical laws are invariant under space translations (if the form of physics laws do not depend on the position)

angular momentum is conserved iff the physical laws are invariant under rotations (if the physics laws do not depend on orientation; if only true about a particular direction <=> only the component of angular momentum in that direction is conserved) symmetries observed in physics:

Symmetries of discrete space-time transformations: parity, time-reversal, charge conjugation

Symmetries of continuous space-time transformations: translational and rotational invariance and Lorentz (space-time rotations) invariance

Symmetries of permutations: lead to two kind of particles: bosons (spin=0,1,2..), which obey Bose-Einstein statistics, and fermions (spin=1/2,3/2...), which obey Fermi-Dirac statistics

gauge symmetries: "internal" symmetries inherent from the nature of the field associated with a given particle carrying such attributes as electric charge - U(I), color - SU(3), weak isospin – SU(2)... et cetera

conservation of electric charge and the existence of the electromagnetic field

<=>

invariance under phase (gauge) U(I) transformation in the "internal" space

Standard Model (~1975)

Standard Model is a gauge theory based on the following "internal" symmetries:

$SU(3)_c \times SU(2)_I \times U(1)_Y$

The SU(3) is an unbroken symmetry, it gives Quantum Chromo-Dynamics (QCD), a quantum theory of strong interactions, whose carriers (gluons) are massless, couple to color (strong force charge)

 $SU(2) \times U(1)$ (quantum theory of electroweak interactions) is spontaneously broken by the Brout-Englert-Guralnik-Higgs-Kibble mechanism; which gives mass to electroweak bosons (massive W⁺, W⁻, Z^o and a massless photon) and all fermions – matter particles

In the Minimal Standard Model, the Higgs sector is the simplest possible: contains one weak isospin doublet of complex Higgs fields, which after giving masses to W⁺, W⁻, Z^o leaves a single neutral scalar Higgs particle which should be observed

Minimal Standard Model

Matter is build of fermions - quarks and leptons, three families of each, with corresponding antiparticles; quarks come in three colors, leptons are color singlets, do not couple to gluons

Bosons are carriers of interactions: 8 massless gluons, 3 heavy weak bosons (W,Z) and I massless photon

A neutral scalar Higgs field permeates the Universe and is (in some way) responsible for masses of other particles (they originate from couplings to Higgs field)

HIGGS SCALAR IT IS THE ONLY PARTICLE MISSING IN THE MINIMAL STANDARD MODEL

Minimal Standard Model

SINGLE NEUTRAL HIGGS SCALAR - THE ONLY PARTICLE MISSING IN MSM

26 parameters NOT predicted by SM:

- masses of 6 quarks
- masses of 6 leptons
- coupling constants of SU(3), SU(2) and U(1)
- Higgs mass and vacuum expectation value
- Cabibbo-Kobayashi-Maskawa quark mixing angles and complex phase
- Maki-Nakagawa-Sakata lepton mixing matrix angles and complex phase
- QCD phase Θ

ALL MUST BE MEASURED !!!

4 July 2012: new boson announcement !!

CERN-PH-EP-2012-218 Submitted to: Physics Letters B

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

May 310, 250 figure and significance of their contributions to the experiment.

IS THIS THE MSM BOSON ???

Fantastic, but...many questions, some new and many old:

- is this the Minimal Standard Model boson?? answering this question will take time and many precision measurements
 with the Higgs mass known, all SM couplings can now be calculated
- ii) there remain MANY unsolved problems in SM still plenty to understand and search for

(personally, I think it would be much more interesting if Higgs boson were not there...or if the new-found particle is NOT a Minimal Standard Model boson)

STANDARD MODEL – MANY OUTSTANDING QUESTIONS

- why so many (26) free parameters: all masses, all couplings, all mixing angles and CP- violating phases
- why 6 quarks and 6 leptons is there an additional symmetry?
- why quarks and and leptons come in three pairs (generations)?
- why is CP not an exact symmetry (or why are laws of physics not symmetrical between matter and antimatter?) perhaps related to why is our Universe matter-dominated?
- what is Dark Matter which seem to be 5-6 times more prevalent in the Universe than ordinary matter (27% vs 5%)?
- HOW TO INCLUDE GRAVITY ???

 Standard Model just a low-energy approximation...

STANDARD MODEL – MANY OUTSTANDING QUESTIONS

 $\mathcal{L}_{SM} = -\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} - \partial_{\nu}W^+_{\mu}\partial_{\nu}W^-_{\mu} - M^2W^+_{\mu}W^-_{\mu} - M^2W^+_{\mu}W^$ $\frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c^{2}_{\mu}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\mu}) - Z^{0}_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}) - Z^{0}_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu}) - Z^{0}_$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\mu}^{+})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})) - igs_{w}(\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})) - igs_{w}(\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})) - igs_{w}(\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})) - igs_{w}(\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) +$ $g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-})-2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-})-\frac{1}{2}\partial_{\mu}H\partial_{\mu}H-\frac{1}{2}m_{h}^{2}H^{2}-\partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-}-\frac{1}{2}\partial_{\mu}H\partial_{\mu}H-\frac{1}{2}m_{h}^{2}H^{2}-\frac{1}{2}m_{\mu}^{2}+\frac{1}{2}m_{\mu}^$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M^{2}\phi^{0}\phi^{0} - \beta_{h}\left(\frac{2M^{2}}{g^{2}} + \frac{2M}{g}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})\right) + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})$ $\frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-\right) \frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right) + \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right) + \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right) + \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right)$ $\frac{1}{2}g\left(W^+_\mu(H\partial_\mu\phi^- - \phi^-\partial_\mu H) + W^-_\mu(H\partial_\mu\phi^+ - \phi^+\partial_\mu H)\right) + \frac{1}{2}g\frac{1}{c_w}(Z^0_\mu(H\partial_\mu\phi^0 - \phi^0\partial_\mu H) - \phi^0\partial_\mu H) + \frac{1}{2}g\frac{1}{c_w}(Z^0_\mu(H\partial_\mu\phi^0 - \phi^0\partial_\mu H) + W^-_\mu(H\partial_\mu\phi^+ - \phi^+\partial_\mu H)) + \frac{1}{2}g\frac{1}{c_w}(Z^0_\mu(H\partial_\mu\phi^0 - \phi^0\partial_\mu H) + W^-_\mu(H\partial_\mu\phi^+ - \phi^+\partial_\mu H))$ $ig\frac{s_w^2}{c_w}MZ^0_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + igs_wMA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - ig\frac{1-2c_w^2}{2c_w}Z^0_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) + igs_wMA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - ig\frac{1-2c_w^2}{2c_w}Z^0_{\mu}(\phi^- - \phi^-\partial_{\mu}\phi^+) + ig\frac{1-2c_w^2}{2c_w}Z^0_{\mu}(\phi^- - \phi^-\partial_{\mu}\phi^$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu (H^2 + (\phi^0)^2 + 2\phi^+ \phi^-) - \psi^- \partial_\mu \phi^+)$ $\frac{1}{8}g^2 \frac{1}{c_w^2} Z^0_\mu Z^0_\mu \left(H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^- \right) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^-) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^-) - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^- + \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^-)$ $\frac{1}{2}ig^2\frac{s_w^2}{c_w}Z_{\mu}^0H(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^- + W_{\mu}^-\phi^+) + \frac{1}{2}ig^2s_wA_{\mu}H(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) + \frac{1}{2}ig^2s_wA_{\mu}H(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^-\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}W_{\mu}^ W^{-}_{\mu}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} + \frac{1}{2}ig_{s}\lambda^{a}_{ij}(\bar{q}_{i}^{\sigma}\gamma^{\bar{\mu}}q_{j}^{\sigma})g^{a}_{\mu} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} + \frac{1}{2}ig_{s}\lambda^{a}_{ij}(\bar{q}_{i}^{\sigma}\gamma^{\bar{\mu}}q_{j}^{\sigma})g^{a}_{\mu} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda}$ $\bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{j}^{\lambda}(\gamma\partial + m_{u}^{\lambda})u_{j}^{\lambda} - \bar{d}_{j}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{j}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) - \frac{1}{3}(\bar{d}_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})\right) + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda})\right) + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda})\right) + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e$ $\frac{ig}{4c_w}Z^0_{\mu}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma^5)d_j^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 + 1 - \gamma^5)e^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - 1 - \gamma^5)e^{\lambda$ $\gamma^{5})u_{j}^{\lambda})\} + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right) +$ $\frac{ig}{2\sqrt{2}}W^-_{\mu}\left((\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{d}^{\kappa}_jC^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^5)u^{\lambda}_j)\right)+$ $\frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}\left(-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right)-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left(H(\bar{e}^{\lambda}e^{\lambda})+i\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda})\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^+\left(-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})+m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda})+\frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{$ $\frac{ig}{2}\frac{m_u^\lambda}{M}\phi^0(\bar{u}_j^\lambda\gamma^5 u_j^\lambda) - \frac{ig}{2}\frac{m_d^\lambda}{M}\phi^0(\bar{d}_j^\lambda\gamma^5 d_j^\lambda) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu\bar{G}^a G^b g^c_\mu + \bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^+$ $M^{2}X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\ddot{\bar{X}}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{0}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{-}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}) + igc_{$ $\partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H\right) + \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{+}H + \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{+}H + \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \frac{1}{2}gM\left(\bar$ $\frac{1-2c_w^2}{2c_w}igM\left(\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-\right) + \frac{1}{2c_w}igM\left(\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-\right) + \frac{1}{2c_w}igM\left(\bar{X}^0X^-\phi^- - \bar{X}^0X^+\phi^-\right) + \frac{1}{2c_w}igM\left(\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-\right) + \frac{1}{2c_w}igM\left(\bar{X}^0X^-\phi^- - \bar{X}^0X^+\phi^-\right) + \frac{1}{2c_w}igM\left(\bar$ $igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + \frac{1}{2} igM \left(\bar{X}^+ X^+ \phi^0 - \bar{X}^- X^- \phi^0 \right)$.

SM problems: spontaneous breaking of the electroweak symmetry by Higgs mechanism

This part of SM is the only remaining untested part of SM. Higgs-boson like particle has been observed by ATLAS and CMS in 2012; remember: the EW symmetry could be broken in a different way, not necessarily like in MSM

Difficulties with the elementary Higgs sector: suppose that SM is just an effective theory and that NEW physics is at some scale . The quantum corrections to fermion masses would depend only logarithmically on scale Λ :

<mark>δm_f~m_flnΛ</mark>

SM problems: spontaneous breaking of the electroweak symmetry by Higgs mechanism

Difficulties with the elementary Higgs sector : quantum corrections to scalar particle (Higgs) exhibit quadratic dependence on scale Λ , making Higgs mass VERY sensitive to the scale of the NEW physics => fine tuning problem (or a gauge hierarchy problem). This fine tuning has to be performed for each order of perturbation theory

- this is a very unpleasant feature of MSM

$$m_{H}^2 = -m_0^2 + g^2 \Lambda^2$$

SM cannot be valid for very large momenta, the scale Λ serves as a cutoff above which physics not contained in SM becomes important. At least one such scale, Planck scale at which gravity becomes relevant, $\Lambda = O(10^{19})$ GeV, must be present in any theory.

Tufts Colloquium, May 3rd, 2013

SM problems: spontaneous breaking of the electroweak symmetry by Higgs mechanism

The original problem of how to give masses to weak gauge bosons in a gauge invariant way was only partially solved by the Higgs mechanism, and the problem was transferred to a new level, where the new puzzle is how to keep Higgs mass stable against large quantum corrections from the higher energy scales

A method of controlling Higgs mass divergence other than fine tuning of parameters would be very welcomed

supersymmetry - the most elegant solution?

- Interesting fact about the scalar mass divergencies from virtual particle loops (quantum corrections) is that the
- virtual fermions and virtual bosons contribute with opposite signs and would cancel each other exactly if for every boson there was a fermion of the same mass and charge - divergencies would cancel without any fine tuning and in all orders of perturbation theory !!
- supersymmetry is such a symmetry: it connects bosons to fermions, it introduces a fermionic partner to every boson and vice-versa, identical in all quantum numbers;
- supersymmetry is a space-time symmetry

SUPERSYMMETRY

Standard particles

SUSY particles

Tufts Colloquium, May 3rd, 2013

supersymmetry - the most elegant solution?

- If supersymmetry were real, it must be somehow broken as we have not yet observed superparticles. while still keeping the ability to solve the gauge hierarchy problem. Not easy, depends on the scale at which SUSY is broken, and on how it is broken. To some extent it remains still an open question
- SUSY provides a natural explanation for "dark matter"
- Local supersymmetry could also be a viable theory of gravity supergravity.

- Geometrical picture (from ~1970: Atiyah, Singer, Donaldson, Witten, Bott...)
- In the mathematical language of fibre bundles, a gauge potential (e.g. 4-vector potential of electrodynamics, or Yang-Mills potentials for electroweak theory) is a connection in a fibre bundle, an abstract state-space of internal structure, described by a given gauge group: U(1) of EM, SU(2) of Yang-Mills theory, SU(3) for strong superimposed on space-time. The curvature of the connection is the gauge field (e.g the field strength tensor $F_{\mu\nu}$ of electrodynamics).

• It is a geometrical picture, very similar to Einstein's gravity, except the distortion measured by curvature is not taking place in the geometry of space-time but in the geometry of the more-dimensional "total space", imposed over space-time.

• Gauge (phase) transformations are analogous to co-ordinate transformations in Riemannian geometry of Einstein's General Relativity

• We may be living in a world which is more than just 4 dimensional (10, 11??), except we don't "see" beyond the familiar 4 space-time dimensions

• In 1980 Scherk, Schwartz and Cremmer revived interest in Kaluza-Klein theories. They advocated that the extra dimensions should be regarded as physical, not abstract, just like the four dimensions that we are aware of.

• Cremmer and Scherk suggested that the difference between the four observed and the unobserved dimensions has its origin in a process of "spontaneous compactification" of the extra dimensions.

- 1981 Witten noticed a remarkable fact (could be a concidence): the minimum number of dimensions for a manifold with SU(3)xSU(2)xU(1) symmetry is 7, so to construct a Kaluza-Klein theory in which those symmetries arise as components of gravity in more than 4 dimensions, one must have at least 11 dimensions. At the same time, 11 is probably the maximum number of dimensions for supergravity.
- 1984 Green and Schwartz: proved consistency of string theories only in 26 dimensions (bosonic) and 10 (supersymmetric)
- 1990 Sen, Duff, Witten: M-theory in 11 dimensions, unites all 5 types of 10 dimensional superstring theories

- We may be living in a world which is more than just 4 dimensional (10, 11??), except we don't "see" beyond the familiar 4 space-time dimensions
- The remaining problem is to include and quantize gravity lots of progress, combining geometry, topology and gauge theories –

non-commutative geometry (non-commutativity in the additional 6 mod 8 dimensions - Alain Connes)

loop quantum gravity

Prof. George Leger (with my help) may teach a course on "Geometry, Topology and Gauge Fields" in Spring 2014

Also, Prof. Loring Tu at Tufts is an expert in topology and differential geometry, he teaches fantastic courses on "Manifolds" and related topics...

BEYOND STARDARD MODEL??

- SUPERSYMMETRY
- GRAND UNIFIED THEORIES based on larger symmetry groups, e.g. SU(5), SO(10), E₈, Monster group...
- extensions of Kaluza-Klein theory, string theory, superstring theory, branes, M-theory, loop quantum gravity, other quantum gravity theories?
- TECHNICOLOR ??

• finding Higgs does not solve SM problems

• EXPERIMENTAL DATA NEEDED BADLY!!

Large Hadron Collider at CERN European Centre for Particle Physics, Geneva, Switzerland

Superconducting Proton Accelerator and Collider installed in a 27km circumference underground tunnel (tunnel cross-section diameter 4m) at CERN Tunnel was built for LEP collider in 1985 First operation in Fall 2008

1984 : First studies for a high-energy pp collider in the LEP tunnel

1993 : cancellation of SSC

1994 : LHC approved by the CERN Council

1994 : top-quark discovered at the Tevatron

1996 : start of construction of LHC machine and experiments 2000 : closing of LEP2

2003 : Start of LHC machine and experiments installation 2009 : 23 November: first LHC collisions ($\sqrt{s} = 900$ GeV) 2010 : 30 March: first collisions at $\sqrt{s} = 7$ TeV

beginning of a long physics programme 2011 : hints of a new particle of mass ~125 GeV 2012 : 1st May: first collisions at $\sqrt{s} = 8$ TeV

2012 : 4th July: discovery of a Higgs-like boson announced

Tufts Colloquium, May 3rd, 2013

ATLAS DETECTOR AT LHC

ATLAS DETECTOR AT LHC

ATLAS TRACKING DETECTORS

6.2m

WAR PAULO LAUGE AND

Inner Detector ($|\eta|$ <2.5, solenoid B=2T): Si Pixels, Si strips, Transition Radiation detector (straws) – particle ID, precise tracking and vertexing, e/ π separation

Momentum resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} p_T (GeV) + 0.015$

Barrel semiconductor tracker Pixel detectors

Barrel transition radiation tracker

End-cap transition radiation tracker

End-cap semiconductor tracker Tufts Colloquium, May 3rd, 2013

2.1m-

ATLAS CALORIMETERS

ATLAS MUON SPECTROMETER

(BU, Brandeis, Harvard, MIT, Tufts) Tufts Colloquium, May 3rd, 2013

PAXETU

ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

Number of nodes:2000Number of computing cores:17000Cooling power:800 kWPeak Event Building Bandwidth:10 GB/sPeak Storage Bandwidth:1.6 GB/s

Amount of data in 2012:

6 PB

100 millions electronic channels 3000 km of cables

ATLAS COMPUTING

ATLAS COLLABORATION

ATLAS RESULTS ARE A TRULY COLLABORATIVE EFFORT OF MANY THOUSANDS OF PEOPLE, PHYSICISTS, ENGINEERS, PROGRAMMERS, **TECHNICIANS AND STUDENTS....** AND MANY FUNDING AGENCIES world –wide computer grid **INVOLVED**!! A COLL COLLAR THE DESIGNATION OF 23.2.8 ~3000 physicists 48 countries **177** universities 12 9. 2. 8.8.8.9 ~1000 students + engineers C + technicians + computer scientists

ATLAS SOFTWARE – muon geometry and tracking tools

- muon tracking geometry

extrapolation
fast simulation

Šárka Todorova-Nová with help from Sam Hamilton, Krzysztof Sliwa, Jeff Wetter Martin Wolter, Andrzej Zemla

MUON TRACKING GEOMETRY

I/ ATLAS (combined, static) frame- system of volumes covering the whole detector

- MS enveloping ID/Calo

2/ active volumes (stations)

- material layers
- alignable
- complete & simplified system of active (tracking)

surfaces

 3/ inert material (toroids, shieldings, feets, supports, infrastructure ..) Automatized transcript from the database.

Š.Todorova-Nová

MUON TRACKING TOOLS

Common tracking tools: extrapolator+propagator

Surface-based (local) parameters: 5 free parameters -> error matrices simplified (wrt. 6 global coordinates)

The art of finding the sequence of intersections with dense volumes boundaries and sensitive layers in rapidly fluctuating magnetic field – a lot of pioneering work done in MS

A number of simplified material options coded

Fast simulation : realistic detector response (hit based)

What can we do with the ISF ...

	ISF_Kernel::execute/evt	speed-up
<i>O</i> Full Geant4measured with 10 events	560 s	1
<i>O</i> ATLFASTII measured with 100 events	25 s	~25
<i>O</i> ATLFASTIIF measured with 1000 events	0.75 s	~750
measured with 1000 events <i>O</i> FastGamma	0.18 s	~3000

NERSITA

AXE

FTEN

1852

E. Ritsch, ISF simulation, Kernel execution time per event, ggF Higgs $\rightarrow \gamma \gamma$

delivered luminosity- fantastic LHC performance

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

pileup – a difficulty in 2012 8 TeV running

Z candidate events 2012 data, 20 (left) and 25 (right) reconstructed vertices

pileup

Running with 50 ns bunch spacing (rather than 25 ns) results in 2x larger pile-up for the same luminosity – lots of effort devoted to prepare for 2012 running - trigger and off-line algorithms which are pile-up "robust" needed to be developed. In general:

sizable impact on jets, E_T^{miss} and tau reconstruction as well as on trigger rates and computing,

no significant impact on tracking, muons, electrons and photons

Improved modeling of in-time and out-of-time pile-up in MC simulations

Computing challenges due to 2x higher trigger rates and large event sizes (10-50 sec/event for $\mu = 5-50$)

detector operation efficiency, data quality

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	95.0%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	98.3%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	100%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	96.0%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	98.2%

\geq 95% for all systems

ATLAS p-p run: April-Sept. 2012

Inner Tracker		Calori	Calorimeters Muon Spectrometer		Magnets					
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
100	99.3	99.5	97.0	99.6	99.9	99.8	99.9	99.9	99.7	99.2

All good for physics: 93.7%

Luminosity weighted relative detector uptime and good quality data delivent Successful 2012 stable the and BypB for is a stable to the angle of the stable to the stable

trigger

Baseline menu designed for $L = 8 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ and mostly unchanged during 2012 run

Average trigger table during Stable Beams:

(from A. Hoecker slides – ATLAS Status Report – LHCC, Dec 5, 2012

ATLAS – MAIN RESULTS

precision measurements and tests of Standard Model

QCD studies.....

WW,WZ, ZZ,W γ , Z γ , γ , γ , γ tt, single top most important background to most Higgs and new physics searches WELL UNDERWAY....

• searches for physics "BEYOND the STANDARD MODEL"

SO FAR, NOTHING:(

 Higgs search: new boson at ~ 25 GeV !! just one? two? spin-parity? Is this the MSM boson?

QCD jet studies

QCD: two central high- p_T jets with an invariant mass of 4.69 TeV (2012 – 8 TeV running)

QCD track and jet studies

Helix structure of the fragmentation string – Dr Sarka Todorova

Understanding of QCD effects is essential for all precision measurements

NOTION IN ERST. A. J.S. TUFTERST. INST. INFITERST. INST. INFITERST. INST. INFITERST. INST. INST. INFITERST. INST. INST.

The idea of helix string [first proposed in JHEP09(1998)14.]

Bo Anderson et al.:"Is there a screwiness at the end of parton cascade ?"

with a helix-like ordered gluon chain & suppress p_T in the tunneling :

transverse momentum of a direct hadron ENTIRELY constrained by the spiral structure of the QCD string (2 degrees of freedom removed from the modelling)

top studies

Top is heaviest particle in the SM, and it may be playing a special role in EW symmetry breaking.

Most physics beyond the SM will show up as excess of events above the SM including 6 quarks –

TOP PRODUCTION HAS TO BE UNDERSTOOD REALLY WELL AS IT IS THE MOST IMPORTANT BACKGROUND FOR MANY OF "NEW PHYSICS" SIGNATURES

Top studies may be the best testing ground for NLO and NNLO calculations

(recently lots of progress - Czakon and Mitov finished qq and qg NNLO -arXiv:1210.6832, gg – soon, may explain the ttbar charge asymmetry puzzle)

Samuel Hamilton, Jeff Wetter, Benjamin Whitehouse, Krzysztof Sliwa

Top polarization, top cross section with a new multidimensional analysis method - event classifier based on support vector machines

Top quark in addition to being of fundamental importance on their own, provide opportunity to test QCD calculations and improve tuning of MC – essential for all analyses

ZZ studies

Tests of NLO SM calculations, good agreement. Deviations could indicate physics beyond SM; neutral triple-gauge-couplings zero in SM

WZ studies

 $\sigma(WZ) = 20.3 + 0.8 - 0.7(stat) + 1.2 - 1.1(syst) + 0.7 - 0.6(lumi)$

Tests of NLO SM calculations, good agreement. Deviations could indicate physics beyond SM; triple-gauge-couplings;

status of ATLAS electroweak and top measurements

SUSY:

SUSY particles are expected to be produced strongly in pairs, and their decay chains invariably include a LSP, usually neutral. The typical signatures are final states with variable number of jets, also multi-leptons, same-sign leptons - almost always with large MET. Large mixing in 3rd generation of SUSY sfermions is expected, with at least one of the top squarks expected to be light.

The Minimal Supersymmetric SM is difficult to reconcile with M_H=125 GeV, as it predicts a smaller mass for its lightest neutral Higgs, h. Large part of MSSM parameter space is excluded.

In the NMSSM, a singlet chiral superfield added to MSSM allows to alleviate the μ and the lightest Higgs mass (H₁) problem. The model has 7 physical Higgses (MSSM has 5).

Many searches for physics beyond SM look for SUSY particles.

SUSY: stop searches

SUSY: stop searches

stop pair -> b+W*+LSP

stop pair -> top+LSP

Exclusion limits at 95% CL are shown in the $\tau_1 - \chi_1^0$ mass plane.

These plots overlay contours belong to different stop decay channels, different sparticle mass hierarchies, and simplified decay scenarios – one should be careful when interpreting

SUSY: stop searches

SUSY searches –squarks and gluinos

squarks and gluinos, strongly produced Ist and 2nd generation

2 jets + MET 4 jets + MET 6 jets + MET

model dependent limits (~TeV scale)

SUSY searches

"natural" SUSY, R-parity violating, and searches for long-lived particles

squarks & gluinos gen squarks 3rd ₹ ГΓ RPV Other

		AILAS SUST	Searches - 95 % CL LOwer Linnis (Status, Dec 2	012)
	MSUGBA/CMSSM : 1 lep $\pm i$'s $\pm F$	L=5.0 ID , 0 TeV [AT LAS-CONF-2012-109]		
	Pheno model : 0 len $\pm i$'s $\pm E$	L=5.0 ID , 6 TeV [ATLAS-CONF-2012-104]	1.24 HeV = 9 mass	ATLAS
es	Pheno model : 0 lop + $JS + E_{T,miss}$	L=5.8 fb , 8 lev [AILAS-CONF-2012-109]	1.18 lev g mass $(m(q) < 2$ lev, light χ_1	Preliminary
ch	Prierio model . 0 lep + j s + $E_{T,miss}$	L=5.8 fb , 8 lev [AILAS-CONF-2012-109]	1.38 IEV Q IIIaSS $(m(g) < 2 \text{ IeV}, \text{light}_{\chi_1})$	riominiary
ear	Gluino med. χ (g \rightarrow qq χ) : 1 lep + J's + $E_{T,miss}$	L=4.7 fb ⁺ , 7 TeV [1208.4688]	900 GeV g mass $(m(\chi_1) < 200 \text{ GeV}, m(\chi^-) = \frac{1}{2}(m(\chi_1) + m(g))$	
Se	GMSB (I NLSP) : 2 lep (OS) + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV \mathcal{G} mass $(\tan\beta < 15)$	
ive	GMSB (τ NLSP): 1-2 τ + 0-1 lep + JS + E	L=4.7 fb ⁻¹ , 7 TeV [1210.1314]	1.20 TeV g mass $(\tan\beta > 20)$	
lus	GGM (DINO INLSP) $\gamma\gamma + E$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV g mass $(m(\tilde{\chi}_1) > 50 \text{ GeV})$ Ldt =	(2.1 - 13.0) fb ⁻¹
lnc	GGM (WINO NLSP) : γ + lep + E	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 GeV g mass	_
	GGM (higgsino-bino NLSP) : $\gamma + b + E_{T miss}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV \tilde{g} mass $(m(\tilde{\chi}_1) > 220 \text{ GeV})$	s = 7, 8 TeV
	GGM (higgsino NLSP) : Z + jets + $E_{T,miss}^{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV \widetilde{g} mass $(m(\widetilde{H}) > 200 \text{ GeV})$	
	Gravitino LSP : 'monojet' + $E_{T,miss}$	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	645 GeV $F^{1/2}$ Scale $(m(\widetilde{G}) > 10^{-4} \text{ eV})$	
6.0	$\tilde{g} \rightarrow b \tilde{b} \tilde{\chi}^0$ (virtual \tilde{b}) : 0 lep + 3 b-j's + $E_{\tau miss}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\chi}_{,}^{0}) < 200 \text{ GeV})$	
ne.	$\tilde{q} \rightarrow t \tilde{\chi}^{0}$ (virtual \tilde{t}) : 2 lep (SS) + i's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105]	850 GeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\chi}_{0}^{0}) < 300^{\circ} \text{ GeV})$	
len len	$\vec{q} \rightarrow t\vec{t} \vec{\chi}^0$ (virtual \vec{t}) : 3 lep + i's + $E_{\tau,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	860 GeV \tilde{g} mass $(m(\tilde{\chi}^b) < 300 \text{ GeV})$	8 TeV results
d G uin	$\tilde{q} \rightarrow t \tilde{t} \tilde{\chi}^{0}$ (virtual \tilde{t}) : 0 lep + multi-i's + E_{τ}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV \tilde{g} mass $(m(\tilde{\chi}^0) < 300 \text{ GeV})$	7 ToV results
al al	$\tilde{q} \rightarrow t \tilde{t} \tilde{\gamma}^{0}$ (virtual \tilde{t}) : 0 lep + 3 b-i's + E_{τ}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\chi}^0) < 200 \text{ GeV})$	7 167 1630113
	$\hat{b}\hat{b} = \hat{b}\hat{\gamma}^0$ 0 lep + 2-b-iets + F_{-}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	620 GeV b mass $(m(\bar{\chi}^0) < 120 \text{ GeV})$	
cks on	$\widetilde{bb} \widetilde{b} \rightarrow t \widetilde{\gamma}^{\pm} \cdot 3 \text{ lep } + i \cdot s + F_{\pm}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	405 GeV \vec{b} mass $(m(\vec{x}^{\pm}) = 2 m(\vec{x}^{\pm}))$	
cti	\widetilde{t} (light), $\widetilde{t} \rightarrow b \widetilde{\gamma}^{\pm 1}$: 1/2 ¹ lep (+ b-iet) + E_{\pm}	L=4.7 fb ⁻¹ , 7 TeV [1208,4305, 1209,2102167 G	ev \tilde{t} mass $(m(\tilde{x}^0) = 55 \text{ GeV})$	
npa	\widetilde{t} (medium), $\widetilde{t} \rightarrow \widetilde{b} \widetilde{\gamma}^{\pm}$: 1 lep + b-iet + E_{\pm}	L=13.0 fb ⁻¹ . 8 TeV [ATLAS-CONF-2012-166]	160-350 GeV t mass $(m(\tilde{y}^0) = 0 \text{ GeV}, m(\tilde{y}^{\pm}) = 150 \text{ GeV})$	
n.	\widetilde{ff} (medium) $\widetilde{t} \rightarrow \mathrm{b}\widetilde{\gamma}^{\pm}$ 2 lep + E_{-}	$l = 13.0 \text{ fb}^{-1}$ 8 TeV [AT] AS-CONE-2012-167]	160-440 GeV \tilde{f} mass $(m(\tilde{\chi}^0) = 0 \text{ GeV} m(\tilde{t}) - m(\tilde{\chi}^\pm) = 10 \text{ GeV})$	
ge ct i	\widetilde{tt} $\widetilde{t} \rightarrow \widetilde{tv}^{\circ}$: 1 len + h-iet + E	/ -13.0 fb ⁻¹ 8 TeV [ATLAS-CONE-2012-166]	230-550 GeV t mass $(m(\chi_1^0) = 0$	
lire	$\frac{1}{10}$	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [1208 1447 1208 2590 1209 4	11861 230-465 GeV T MASS $(m_{\tilde{\chi}_1}^0) = 0$	
<i>w a</i>	ff (natural GMSR) : $7(\rightarrow II) + b - iet + F$	$L = 2.1 \text{ fb}^{-1}$ 7 TeV [1204.6736]	$\frac{210 \text{ GoV}}{1000} \frac{1000}{1000} \frac{1000}$	
	$\prod_{i=1}^{T} \sum_{j=1}^{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{T$	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [1208.2884] 95.10	$r_{10} = r_{10} = 0$	
ct /	$\widetilde{\omega}^+ \widetilde{\omega}^- \widetilde{\omega}^+ \rightarrow \widetilde{\omega}_{\tau,\text{miss}}$	$L = 4.7 \text{ fb}^{-1}$ 7 TeV [1209.2894]	$\frac{110}{240} \frac{240}{240} \frac{240}{240} \frac{1}{100} \frac{1}{100$	
EN	χ_{χ} , $\chi_{\gamma} = V(W) = W\chi_{\gamma}$. 2 lep + $E_{T,\text{miss}}$	$L = 4.7 \text{ m}^{-1}$, $T = V [1200.2004]$	110-540 GeV χ_1 mass $(m(\chi_1) < 10 \text{ GeV}, m(I,V) = \frac{1}{2}(m(\chi_1) + m(\chi_1)))$	
- 0	$\chi_1 \chi_2 \rightarrow I_2 \chi_1 ((*), (*), (*) \chi_1 ((*)) = 3 \text{ lep } + L_{T,\text{miss}}$	L=13.0 fb ⁻¹ 8 ToV [ATLAS-CONF 2012-154]	140 205 CoV $\widetilde{\chi}_{1}^{\pm}$ mass $(m(\chi_{1}) = m(\chi_{2}), m(\chi_{1}) = 0, m(i,v)$ as above)	
	$\chi_{\chi} \rightarrow W \chi_{Z} \chi_{} $ S lep + $E_{T,miss}$	L=13.0 ID , 8 TeV [A1LA3-CONF-2012-154]	140-295 GeV χ_1 11435 $(m\chi_1) = m(\chi_2), m(\chi_1) = 0, \text{ sieptons decoupled}$	
ed	Direct χ_1 pair prod. (Alvisb) : long-lived χ_1	L=4.7 ID , 7 IEV [1210.2852]	$\frac{1}{20 \text{ GeV}} \chi_1 \prod_{\alpha} \frac{1}{3} \chi_1 (\chi_1) < 10 \text{ III}$	
-liv Cle	Stable \tilde{g} R-hadrons : low β , $\beta\gamma$ (full detector)	L=4.7 fb , 7 lev [1211.1597]		
ng	Stable t R-hadrons : low β , $\beta\gamma$ (full detector)	L=4.7 fb , 7 lev [1211.1597]		
D i	GMSB : stable t	L=4.7 fb ⁻¹ , 7 leV [1211.1597]	300 GeV T IIIdSS (5 < tan β < 20)	
	$\chi_1 \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$	L=4.4 fb ', 7 TeV [1210.7451]	700 GeV Q IIIass $(0.3 \times 10^{\circ} < \lambda_{211}^{\circ} < 1.5 \times 10^{\circ}, 1 \text{ mm} < c\tau < 1 \text{ m,g} determines the second se$	ecoupled)
	LFV : pp $\rightarrow v_{\tau}+X$, $v_{\tau}\rightarrow e+\mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	1.61 TeV V_{τ} mass $(\lambda_{311}^2=0.10, \lambda_{132}=0.05)$	
	LFV : pp $\rightarrow v_1 + X, v_1 \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb , 7 TeV [Preliminary]	1.10 TeV $v_{\rm L}$ mass $(\lambda_{311}^{\prime}=0.10, \lambda_{1(2)33}=0.05)$	
P	Billnear RPV CMSSM : 1 lep + / j's + $E_{T,miss}$	L=4.7 fb , 7 TeV [ATLAS-CONF-2012-140]	1.2 TeV $q = g \text{ mass} (c\tau_{LSP} < 1 \text{ mm})$	
00	$\chi_1 \chi_2 \chi_1 \rightarrow W \chi_0, \chi_0 \rightarrow eev_\mu, e\mu v_e$: 4 lep + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	700 GeV $\chi_1 \max_{0} (m(\tilde{\chi}_1) > 300 \text{ GeV}, \lambda_{121} \text{ or } \lambda_{122} > 0)$	
	$I_{L}I_{L}, I_{L} \rightarrow I\widetilde{\chi}_{1}, \widetilde{\chi}_{1} \rightarrow eev_{\mu}, e\mu v_{\mu} : 4 lep + E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	430 GeV I MASS $(m(\tilde{\chi}_1) > 100 \text{ GeV}, m(I_{\theta}) = m(I_{\tau}), \lambda_{121} \text{ or } \lambda_{122} > 0)$	
	g̃ → qqq : 3-jeť resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV g mass	
14/14	Scalar gluon : 2-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	100-287 GeV Sgluon mass (incl. limit from 1110.2693)	
VVI	VIP Interaction (D5, Dirac χ) : 'monojet' + E	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M [*] Scale (m_{χ} < 80 GeV, limit of < 687 GeV for D8)	
		10 ⁻¹	1 10	
		10		

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty. Mass scale [TeV]

ATLAS-COM-CONF-2013-026

TIAC CUCV Coordeast 050/ CL Laurer Limita (Chatua, Dec 201)

ATLAS-COM-CONF-2013-028

exotic: ee, $\mu\mu$,WZ

Searched for resonanses (new bosons?) in invariant mass spectra of dileptons, WZ

Limits (95% CL): M(Z') > 2.79 TeV (ee); M(Z') > 2.48 TeV (μμ); M(Z') > 2.86 TeV (combined) M(W')> 1.18 TeV

exotic: $\mu^{\pm}\mu^{\pm}$ and $\gamma\gamma$ searches

Prompt photons or like-sign leptons is one of the most powerful signatures for new physics

Randall-Sundrum graviton with strong coupling to SM particles would decay to a photon pair

 $M(G) > 2.06 \text{ TeV} (k/M_{Pl}=0.1)$

Doubly charged Higgs would show up as a narrow like-sign resonance

searches or new physics specific models and model independent studies

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)

	Large ED (ADD) : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]		4.37 TeV M _D (δ=2)	
	Large ED (ADD) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV	/_ (δ=2)	ATLAC
лs	Large ED (ADD) : diphoton & dilepton, $m_{\gamma\gamma/ }$	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]		4.18 TeV M _S (HLZ δ=3, NL	O) AILAS
.0	UED : diphoton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.41 TeV Compa	act. scale R ⁻¹	Preliminary
ns	S^{1}/Z_{2} ED : dilepton, m_{μ}	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]		4.71 TeV M _{KK} ~ R ⁻¹	
пе	RS1 : diphoton & dilepton, m	L=4.7-5.0 fb ⁻¹ , 7 TeV [1210.8389]	2.23 TeV	Graviton mass $(k/M_{Pl} = 0.7)$	1)
lin	RS1 : ZZ resonance, $m_{\text{IIII}/\text{IIII}}$	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 Gev Graviton mass	$s(k/M_{\rm Pl} = 0.1)$	r , l
a	RS1 : WW resonance, $m_{T,ky}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton	mass $(k/M_{\rm Pl} = 0.1)$	$Ldt = (1.0 - 13.0) \text{ fb}^{-1}$
Xtr	RS g _{KK} \rightarrow tt (BR=0.925) : tt \rightarrow I+jets, m	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136]	1.9 TeV g _k	, mass	
Ш	ADD BH ($M_{TH} / M_D = 3$) : SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (δ=6)	$\mathbf{I}\mathbf{S} = 7, \mathbf{S}$ lev
	ADD BH ($M_{TH}/M_{D}=3$) : leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV Μ _D (δ	=6)	
	Quantum black hole : dijet, $F_{ij}(m_{ij})$	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]		4.11 TeV M _D (δ=6)	
	qqqq contact interaction : $\hat{\chi}(m_{\mu})$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		7.8 TeV Λ	
Ö	qqll CI : ee & μμ, m_	L=4.9-5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 TeV	Λ (constructive int.)
	uutt CI : SS dilepton + jets + $E_{T,miss}$	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV Λ		
	Z' (SSM) : m _{ee/uu}	L=5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129] 2.49 TeV	Z' mass	
	Z' (SSM) : m _{TT}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mas	S	
5	W' (SSM) : <i>m</i> _{Te/u}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV	W' mass	
~	W' (\rightarrow tq, g _p =1) : m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W' mass		
	$W'_{B} (\rightarrow tb, SSM) : m_{tb}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016]	1.13 TeV W' mass		
	W* : m	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.42 TeV	W* mass	
~	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 st gen. LQ mass		
9	Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 Gev 2 nd gen. LQ mass	3	
	Scalar LQ pair (β=1) : kin. vars. in ττjj, τνjj	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	538 GeV 3rd gen. LQ mass		
S	4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass		
ark	4^{th} generation : b'b'($T_{z/2}T_{5/3}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T) mass		
ļn	New quark b' : b້bັr→ Zb+X, m _{zb}	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 4	00 GeV b' mass		
2	Top partner : TT \rightarrow tt + A ₀ A ₀ (dilepton, M ₁)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass (m(A) < 100	GeV)	
θΛ	Vector-like quark : CC, m_{lyq}^2	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mas	s (charge -1/3, coupling κ_{q0}	$p = v/m_0$
2	Vector-like quark : NC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass	(charge 2/3, coupling κ_{aQ}	$= v/m_0)$
ΪŤ.	Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV	q* mass	-
SC	Excited quarks : dijet resonance, m_{ii}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3	.84 TeV q* mass	
Шф	Excited lepton : I- γ resonance, m_{μ}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV	I* mass ($\Lambda = m(I^*)$)	
	Techni-hadrons (LSTC) : dilepton,m _{ee/uu}	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ _τ /ω _τ mass (<i>n</i>	$m(\rho_{T}/\omega_{T}) - m(\pi_{T}) = M_{w})$	
	Techni-hadrons (LSTC) : WZ resonance (vIII), m_{TWZ}	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T})$	$+ m_{W}, m(a_{T}) = 1.1 m(\rho_{T})$	
0	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N ma	ss (<i>m</i> (W _R) = 2 TeV)	
th	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV	W_R mass ($m(N) < 1.4$ TeV	/)
0	$H_{L}^{\pm\pm}$ (DY prod., BR($H_{L}^{\pm\pm} \rightarrow II$)=1) : SS ee ($\mu\mu$), m_{μ}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	109 Gev H ^{±±} mass (limit at 398 Ge	eV for μμ)	
	H ^{±±} (DY prod., BR(H ^{±±} →eμ)=1) : SS eμ, m_	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 37	5 GeV H ^{±±} mass		
	Color octet scalar : dijet resonance, m_{ii}	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Sc	alar resonance mass	
	μ.				
		10 ⁻¹	1	10	10 ²
		10	•	10	
*Onl	v a selection of the available mass limits on now states of	nhenomena shown			Mass scale [IeV]
UIII	y a selection of the available mass limits of New States Of	phenomena shown			

Exotics Models:

Extra dimensions: **RS KK Graviton** (dibosons, dileptons, diphotons) RS KK gluons (top antitop) ADD (monojets, monophotons, dileptons, diphotons) KK Z/gamma boosns (dileptons) Grand Unification symmetries (dielectons, dimuons, ditaus) Leptophobic topcolor Z' boson (dilepton ttbar, I+j, all had) S8- color octet scalars (dijets) String resonance (dijets,) Benchmark Sequential SM Z',W' W' (lepton+MET, dijets, tb) W* (lepton+MET, dijets) Quantum Black Holes (dijet) Black Holes (I+jets, same sign leptons) Technihadrons (dileptons, dibosons) Dark Matter WIMPs (Monojet, monophotons) **Excited** fermions q*, Excited quarks (dijets, photon+jet) I*, excited leptons (dileptons+photon) Leptoquarks (1st, 2nd, 3rd generations) Higgs -> hidden sector (displaced vertices, lepton jets) Contact Interaction Ilqq CI 4q Cl (dijets) Doubly charged Higgs (multi leptons, same sign leptons) 4th generation t'->Wb, t'->ht, b'-Zb, b'->Wt (dileptons, same sign leptons, I+]) VLQ-Vector Like guarks Magnetic Monopoles (and HIP) Heavy Majorana neutrino and RHW

MSM Higgs search and properties

but also large backgrounds associated production – smaller but cleaner

VBF – even smaller but may help to improve sensitivity

increase in sensitivity at 8 TeV -> 1.1x - 1.15x

MSM Higgs search and properties

Most sensitive channels for $120 < M_H < 130$ GeV:

H ->ZZ*->4I, H-> $\gamma \gamma$ H->WW*->I $\nu I \nu$ H-> $\tau \tau$ W/ZH->W/Z bb

By some strange coincidence, M_H = 125 GeV is one of the best places to find Higgs and study its properties (from the experimental point of view) – many channels with relatively large branching fractions !
160 m_{4l} [GeV]

150

160

m_η [GeV]

Events/2.5 GeV Data 30 ٠ ATLAS Preliminary Background ZZ^(*) $H \rightarrow ZZ^{(*)} \rightarrow 4I$ Background Z+jets, tt 25 Signal (m_=125 GeV) W/// Syst.Unc. 20 $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}: [Ldt = 20.7 \text{ fb}^{-1}]$ 15 10 5 $M_{H} = 125.5 \pm 0.2$ (stat) 80 100 120 140 +0.5-0.6(syst) GeV ATLAS-COM-CONF-2013-013 $(4I + \gamma\gamma)$ 10000 Events / 2 GeV Selected diphoton sample Data 2011+2012 8000 Sig+Bkg Fit (m =126.8 GeV) Bkg (4th order polynomial) $\Delta M = 2.3 + 0.6 - 0.7 (stat)$ ATLAS Preliminary 6000 ±0.6(syst) GeV 4000 √s = 7 TeV. Ldt = 4.8 fb 2000 √s = 8 TeV, Ldt = 20.7 fb⁻¹ 500 400 200 100 100 200 -200 100 Tufts Colloquium, May ATLAS-COM-CONF-2013-012

Evidence for VBF ($\sim 3.1\sigma$)

Measurements of relative production rates very important for establishing properties of a new boson

> H -> WW*jj Vector Boson Fusion Jeff Wetter, Ben Whitehouse, Noah Kurinsky and Krzysztof Sliwa (analysis with svm event classifier)

> > AXET

With the M_H known, all couplings can be calcutated within SM –> is this a SM Higgs or not?

Expected for M_{H} =125 GeV at 8 TeV

- ggF 19.5 pb fermion couplings (γγ, ZZ, WW*)
- VBF 1.6 pb boson couplings ($\gamma\gamma$, ZZ, WW* >=2 jets)
- VH 1.1 pb boson couplings (γγ, ZZ, WW* +W,Z)
- ttH 0.1 pb fermions couplings

spin-parity compatible with $J^{CP} = 0^+$ (as in Minimal Standard Model)

 $\begin{array}{ll} H \rightarrow \gamma \ \gamma: & \text{spin 2 excluded at 2.8 } \sigma \ (100\% \ \text{gg}) \\ & (\text{spin 1 excluded, as well, of course}) \\ H \rightarrow 4I: & \text{spin 0}^{-} \text{excluded at} \geq 2 \ \sigma, \text{spin 2 excluded at 1.5-3 } \sigma \ (0-100\% \ \text{gg}) \\ H \rightarrow WW^*: & \text{spin 2 excluded at 95-99\% C.L (depending on \% \text{gg})} \end{array}$

CMS

S/(S+B) Weighted Mass Distributions MVA and Cuts-Based Analysis Side by Side

Sum of mass distributions for each event class, weighted by S/(S+B)

B is integral of background model over a constant signal fraction interval

H → γγ : Couplings μ_V (VBF+VH) vs μ_F (ggH+ttH) and Mass Determination

CMS

Mass measured

profiling μ_V , μ_F along with all other nuisances to reduce model dependence

Main Systematic: Energy Scale extrapolation from M_z to M_H ~125 GeV

(0.47%)

 μ_{V} and μ_{F} are consistent, within 1 sigma, of SM prediction

Best Fit: Mass = 125.4 GeV ± 0.5 (stat) ± 0.6 (syst.) GeV

H → ZZ(*) → 4e, 4μ, 2e2μ Candidates Mass Spectrum

25

Z →4I Peak Provides Cross Check

$H \rightarrow ZZ \rightarrow 4I$ $Mass Fit and Coupling Factors \mu_{V} and \mu_{F}$ 1. 3D Fit (M₄₁, K_D, δ M₄) for mass: M = 125.8 ± 0.5 (stat) ± 0.2 (syst) GeV 2. Momentum Scale, Resolution: Studied & tuned in dilepton control samples 3. In Dijet category: P_T spectrum, V_D: used to disentangle prod. Mechanisms: Scale factors for Couplings to Vector Bosons \mu_{V} (from VBF, ZH, WH) and to Fermions \mu_{F} (from gg via quark loops, ttH)

Characterization of the Boson: the Mass

 Assume one particle, use sub-channels with good mass resolution:

γγ(untagged), γγ(VBF), ZZ(4I)

- Do a likelihood scan for the Mass & Signal Strength
- Results are self-consistent; can be combined
- To reduce model dependence, float cross sections in 3 channels; do 1D fit for a common mass:

m_x = 125.8 ±0.4(stat) ±0.4 (syst) GeV

Compatibility: Among Channels and with SM Higgs boson

New (and older) results are compatible with the SM Higgs boson

Also Note Latest H $\rightarrow \gamma \gamma$ Result on Full Dataset: $\mu = 0.78^{+0.28}_{-0.26}$

Observation of a New Boson Near 125.8 GeV p-values and Significance by Channel HCP

$\begin{array}{c} \begin{array}{c} \text{OMS Preliminary } (s = 7 \text{ TeV}, L \leq 5.1 \text{ fb}^{-1} \text{ vs} = 8 \text{ TeV}, L \leq 12.2 \text{ fb}^{-1} \text{ vs} \\ 10^{-1} & 0 & 0 & 0 \\ 10^{-9} & 0 & 0 & 0 \\ 10^{-13} & 0 & 0 & 0 \\ \end{array}$							
$10^{-17} \xrightarrow[H \to \gamma\gamma]{H \to \gamma\gamma} \xrightarrow[H \to 2Z]{H \to \gamma\gamma} \xrightarrow[H \to 2Z]{H \to 2Z} \xrightarrow[H \to 2Z]{L \to 1} \xrightarrow[H \to 2Z]$							
	un-	VBF-	VH-	ttH-			
	tagged	tag	tag	tag	H→		
γγ	~	~			H→		
bb			~	~	н		
ττ	~	~	~				
WW(lvlv)	~	~	~		H _		
ZZ(4I)	~	CMS	γγ+⊿ 				

Excess at ~125.8 GeV:					
Combined Significance 6.9 O					
High sensitivity, high mass					
resolution channels: $\gamma\gamma + 4I$					
• $ZZ \rightarrow 4I$: 4.4 σ Excess					
γγ 4.0 σ Excess					

	Expected σ	Observed σ
H→ZZ	5.0	4.4
Η→γγ	2.8	4.0
$H \rightarrow WW$	4.3	3.0
$H \rightarrow bb$	2.2	1.8
$\textbf{H} \rightarrow \tau \tau$	2.1	1.8
$H \rightarrow \gamma\gamma + ZZ + WW + TT + bb$	7.8	6.9

Searches for New Physics: Exotics

CMS SEARCHES for NEW PHYSICS

10

for New Physics: Exotics

11

Tufts Collc

See talks from Samuel Pierre Jean Calvet and Sung Won Lee

MSM Higgs search & properties – "unofficial" combination

John Ellis and Tevong You: arXiv: 1303.38791 [hep-ph] 15 Mar 2013

LOOKS LIKE A MSM HIGGS

near Future – present LHC schedule

		4			
2009			♦ LHC startup, $\sqrt{s} = 900 \text{ GeV}$		L
2010					
2011			\sqrt{s} s=7~8 TeV, L=6x10 ³³ cm ⁻² s ⁻¹ , bunch space	ng 50 ns	
2012					~20-25 fb ⁻¹
2013	LS1		Go to design energy, nominal luminosity	new Pixel	_
2014			(Phase-0)	B-layer	
2015					
2016			$\sqrt{s}=13\sim14$ TeV, L $\sim1x10^{34}$ cm ⁻² s ⁻¹ , bunch space	cing 25 ns	
2017					~75-100 fb ⁻
2018	LS2		NSW, FTK		
2019					LVLI trigger
2020			\sqrt{s} =14 TeV, L~2x10 ³⁴ cm ⁻² s ⁻¹ , bunch spacing	g 25 ns	
2021					~350 fb ⁻¹
2022	LS3		HL-LHC Phase-2 upgrade, IR, crab cavities?		new tracker
2023					
2030?			\sqrt{s} =14 TeV, L=5x10 ³⁴ cm ⁻² s ⁻¹ , luminosity lev	velling	~3000 fb ^{.1}

Higgs boson properties

With the KNOWN mass of a new boson, the MSM couplings are calculable, and will be compared with the data

With ~300/fb- after Phase-I upgrade - the ratios of couplings will be known to within 30-50%

Spin and parity will be known with $\sim 5\sigma$ level

HHH couplings – maybe with 3000/fb

HHHH – perhaps not at LHC

ATLAS Preliminary (Simulation) $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt}=300 \text{ fb}^{-1}; \int \text{Ldt}=3000 \text{ fb}^{-1}$

NEW PHYSICS ? FUTURE?

Of course, with the energy increase from 8 TeV to \sim 13 TeV, in addition to Higgs boson(s) studies, there will be another round of comprehensive searches for NMSSM and other "new physics".

This is what the physics goal of the LHC program is – to EXPLORE the new, previously unreachable, energies, and – in turn – new regions of phase space and model parameter spaces.

MORE DATA FROM 2015 at ~13 TEV

NEW PHYSICS ? FUTURE?

Finding the new boson is a great physics result, however, if it just looks like the minimal Standard Model Higgs boson – the simplest possible realization of the electroweak symmetry breaking – it will leave many unaswered questions – the fine tuning (gauge hierarchy problem) will still be with us

It is possible that with an increase of the pp collision energy from 8 TeV to 13 TeV we'll cross a threshold above which we'll observe new particles, too heavy to have been produced so far. This would be REALLY GREAT!

If not, then perhaps we'll have to turn our attention to precise measurements of the branching fractions and properties of the Higgs boson, either at LHC, or at a new e⁺e⁻ collider, a "cleaner" environment in which to study the MSM Higgs boson

Lake Geneva

prefeasibility assessment for an 80km project at CERN John Osborne and Caroline Waiijer ESPP contr. 165

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t	
beam energy Еь [GeV]	104.5	60	120	45.5	120	175	
circumference [km]	26.7	26.7	26.7	80	80	80	
beam current [mA]	4	100	7.2	1180	24.3	5.4	
#bunches/beam	4	2808	4	2625	80	12	
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.0	
horizontal emittance [nm]	48	5	25	30.8	9.4	20	
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1	
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0	
partition number J	1.1	1.5	1.5	1.0	1.0	1.0	
momentum comp. α, [10 ⁻⁵]	18.5	8.1	8.1	9.0	1.0	1.0	
SR power/beam [MW]	11	44	50	50	50	50	
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2	
β* _y [cm]	5	10	0.1	0.1	0.1	0.1	
σ* _x [μm]	270	30	71	78	43	63	
σ* _y [μm]	3.5	16	0.32	0.39	0.22	0.32	
hourglass F _{hg}	0.98	0.99	0.67	0.71	0.75	0.65	
ΔE ^{sR} loss/turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3	
	2.64	0.5	12.0	2.0	6.0	12.0	
RF,tot [GV]	0.77	0.5	12.0	4.0	9.0	12.0	
^o max,RF [/0] ε /ID	0.025	N/A	0.09	0.12	0.10	0.05	
5x/" 5/ID	0.065	N/A	0.05	0.12	0.10	0.05	
γγ/" f[kHz]	1.6	0.65	3.91	1 29	0.44	0.43	
F [MV/m]	7.5	11.9	20	20	20	20	
eff. RF length [m]	485	42	600	100	300	600	
f [MHz]	352	721	1300	700	700	700	
δ ^{sr}	0.22	0.12	0.23	0.06	0.15	0.22	
σ ^{sR} ,	1.61	0.69	0.23	0.19	0.17	0.25	
L/IP[10 ³² cm ⁻² s ⁻¹]	1.25	N/A	107	10335	490	65	
number of IPs	4	1	2	2	2	2	
Rad.Bhabha b.lifetime [min]	360	N/A	16	74	32	54	
Υ _{вs} [10 ⁻⁴]	0.2	0.05	10	4	15	15	
n /collision	0.08	0.16	0.60	0.41	0.50	0.51	
Δδ ^{BS} /collision [MeV]	0.1	0.02	33	3.6	42	61	
Δδ ^{BS} ,/collision [MeV]	0.3	0.07	48	6.2	65	95	

ILC Parameters			Baseline	1st Stage	L Upgrade	TeV U A	pgrade B
Centre-of-mass energy	Ecm	GeV	500	250	500	1000	1000
Collision rate	fren	Hz	5	5	5	4	4
Electron linac rate	flinac	Hz	5	10	5	4	4
Number of bunches	n_b		1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	1.74	1.74
Bunch separation	Δt_b	ns	554	554	366	366	366
Pulse current	I_{beam}	mA	5.79	5.8	8.75	7.6	7.6
Average total beam power	P_{beam}	MW	10.5	5.2	21.0	27.2	27.2
Estimated AC power	P_{AC}	MW	162	128	205	300	300
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.124	0.190	0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.070	0.152	0.070	0.043	0.047
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_x$	μm	10	10	10	10	10
Vertical emittance	$\gamma \epsilon_y$	nm	35	35	35	30	30
IP horizontal beta function	β_x^*	mm	11.0	13.0	11.0	22.6	11.0
IP vertical beta function (no TF)	eta_y^*	mm	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	σ_x^*	nm	474	729	474	481	335
IP RMS veritcal beam size (no TF)	σ_y^*	nm	5.9	7.7	5.9	2.8	2.7
Luminosity (inc. waist shift)	L	$ imes 10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-2}$	1 1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		58.3%	87.1%	58.3%	59.2%	44.5%
Average energy loss	δ_{BS}	_	4.5%	0.97%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	N_{pairs}	$\times 10^{3}$	139.0	62.4	139.0	200.5	382.6
Total pair energy per bunch crossing	E_{pairs}	TeV	344.1	46.5	344.1	1338.0	3441.0
				Initial (Lin	al e		

The European Strategy for Particle Physics

• High Energy Frontier:

Based on the Physics Briefing Book CERN-ESG-005, 13 January 2013

Name	beams	collider geometry	√s, TeV	luminosity	Operation (years)
HL-LHC	рр	circular	14	3000 fb⁻¹	2024-2030
HE-LHC	рр	circular	26-33	100-300 fb ⁻¹ /year	After 2035
VHE-LHC	рр	circular	40-100	-	After 2035
LEP3	e ⁺ e ⁻	circular	0.240	1•10 ³⁴ cm ⁻² s ⁻¹	After 2024
ILC	e ⁺ e ⁻	linear	0.250→1.0	~1•10 ³⁴ cm ⁻² s ⁻¹	~ 2030
CLIC	e ⁺ e ⁻	linear	0.500→3.0	2-6•10 ³⁴ cm ⁻² s ⁻¹	After 2030
TLEP	e ⁺ e ⁻	circular	0.24-0.350	5•10 ³⁴ cm ⁻² s ⁻¹	After 2035
LHeC	e ⁻ (e ⁺)p	circular		O(100 fb ⁻¹)	After 2022
γγ-collider	γγ				?
µ-collider	$\mu^+\mu^-$	circular			?

NEW PHYSICS ? FUTURE?

With the energy increase from 8 TeV to \sim 13 TeV, in addition to Higgs boson(s) studies, there will be another round of comprehensive searches for NMSSM and other "new physics".

It is possible that with an increase of the pp collision energy from 8 TeV to I3 TeV we'll cross a threshold above which we'll observe new particles, too heavy to have been produced so far. This would be REALLY GREAT!

This is what the physics goal of the LHC program is – to EXPLORE the new, previously unreachable, energies, and – in turn – new regions of phase space and model parameter spaces.

MORE DATA FROM 2015 at ~13 TEV