

Krzysztof Sliwa
Tufts University
Tufts Colloquium, May $3^{\text {rd }}, 2013$

Outline

- PHYSICS PROGRAM AT THE LHC
- test the Standard Model, hopefully find "physics beyond SM"
- find clues to the EWK symmetry breaking - Higgs(ses)?
> what has and what has NOT changed after a Higgs-like boson at $\sim 125 \mathrm{GeV}$ was found by ATLAS and CMS in 2012?

Outline

- Standard Model
- ATLAS - exploratory experiment with multipurpose detector to study pp collisions at LHC at highest energies possible:
- 7 TeV in 2011, 8 TeV in 2012, $\sim 13 \mathrm{TeV}$ from April 2015...
- Selected ATLAS results
- Summary of CMS results
- what it all means?
- FUTURE plans?

what is elementary particle physics ?

science trying to find answers to a few fundamental questions:
what is the world made of?
how does the world work?
what is world?
classical physicist's view of the world

Standard Model view of the world

- Time
-Space
- Matter
- Forces
-space-time
-quarks and leptons
-quantum gauge fields

Path to Standard Model: Minkowski space-time

- Special Theory of Relativity - Einstein in 1905
- Minkowski I907: interpreted Einstein's Special Relativity (I905) a consequence of time and space being an unseparable 4-dimensional space-time entity ("world") - time and space no longer absolute because of the finite, and the same for all observers, speed of propagation of light or any signal

Path to Standard Model: General Relativity

- General Theory of relativity Einstein I907-I915 a new relativistic and geometric theory of gravity: matter tells

spacetime how to curve, and curved spacetime tells matter

 how to move" (Wheeler)

Path to Standard Model: early attempts at Unification

- I918 Weyl's theory of gravitation and electricity, he introduced the term gauge invariance; unification was unsuccessful; however, his idea applied to quantum mechanic became what we now call gauge theories (complex scale factor rather than real)
- 1921 Kaluza and Klein suggested that gravitation and electricity can be unified in a theory of gravity in 5-dimensional Riemannian geometry; not much support, mainly because it was introducing new dimension (Ockham's razor principle)

Path to Standard Model: Quantum Mechanics

- PHYSICS ONATOMIC SCALE IS GOVERNED BY QUANTUM MECHANICS - no longer completely deterministic as in classical physics (Feynman : nobody understands quantum mechanics)
at the heart of QM - noncommutativity of algebra of operators corresponding to phase space coordinates - momentum and position (Heisenberg algebra)
- periodicity of chemical elements is a quantum effect
observable on macroscopic scale (periodicty of elements in the Mendeleev table)

Path to Standard Model: symmetries \Leftrightarrow conservation laws

In 1918 Emmy Noether, while working with David Hilbert and Felix Klein in Gottingen, proved two theorems (for finite continuous groups and infinite continuous groups) which are the foundations of the modern (XXth century) physics. The theorems are collectively known as "Noether's theorem"

Informally, Noether's theorem says:

> symmetry <=> conservation law

Path to Standard Model: symmetries \Leftrightarrow conservation laws

Symmetries of space-time
energy is conserved if and only if (iff) the physical laws are invariant under time translations (if the form of physics laws do not depend on time)
linear momentum is conserved only iff the physical laws are invariant under space translations (if the form of physics laws do not depend on the position)
angular momentum is conserved iff the physical laws are invariant under rotations (if the physics laws do not depend on orientation; if only true about a particular direction <=> only the component of angular momentum in that direction is conserved)

Path to Standard Model: symmetries \Leftrightarrow conservation laws

symmetries observed in physics:
Symmetries of discrete space-time transformations: parity, time-reversal, charge conjugation

Symmetries of continuous space-time transformations: translational and rotational invariance and Lorentz (space-time rotations) invariance

Symmetries of permutations: lead to two kind of particles: bosons (spin=0, I, 2..), which obey Bose-Einstein statistics, and fermions (spin=I/2,3/2...), which obey Fermi-Dirac statistics

Path to Standard Model: symmetries \Leftrightarrow conservation laws

gauge symmetries:"internal" symmetries inherent from the nature of the field associated with a given particle carrying such attributes as electric charge - U(I), color - SU(3), weak isospin - SU(2) ... et cetera

```
conservation of
electric charge
and the existence
of the
electromagnetic
field
```

invariance
under phase
(gauge) $\mathrm{U}(\mathrm{I})$
transformation
in the
"internal"
space

Standard Model (~1975)

Standard Model is a gauge theory based on the following "internal" symmetries:

$S U(3)_{c} \times S U(2)_{I} \times U(I)_{Y}$

The SU(3) is an unbroken symmetry, it gives Quantum Chromo-Dynamics (QCD), a quantum theory of strong interactions, whose carriers (gluons) are massless, couple to color (strong force charge)
$\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$ (quantum theory of electroweak interactions) is spontaneously broken by the Brout-Englert-Guralnik-Higgs-Kibble mechanism; which gives mass to electroweak bosons (massive $\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{\circ}$ and a massless photon) and all fermions - matter particles

In the Minimal Standard Model, the Higgs sector is the simplest possible: contains one weak isospin doublet of complex Higgs fields, which after giving masses to $\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{\circ}$ leaves a single neutral scalar Higgs particle which should be observed

Minimal Standard Model

Matter is build of fermions - quarks and leptons, three families of each, with corresponding antiparticles; quarks come in three colors, leptons are color singlets, do not couple to gluons

Bosons are carriers of interactions: 8 massless gluons, 3 heavy weak bosons (W,Z) and I massless photon

A neutral scalar Higgs field permeates the Universe and is (in some way) responsible for masses of other particles (they originate from couplings to Higgs field)

HIGGS SCALAR IT IS THE ONLY PARTICLE MISSING IN THE MINIMAL STANDARD MODEL

Minimal Standard Model

26 parameters NOT predicted by SM:

- masses of 6 quarks
- masses of 6 leptons
- coupling constants of SU(3), SU(2) and U(1)
- Higgs mass and vacuum expectation value
- Cabibbo-Kobayashi-Maskawa quark mixing angles and complex phase
- Maki-Nakagawa-Sakata lepton mixing matrix angles and complex phase
- QCD phase Θ

ALL MUST BE MEASURED !!!

4 July 2012: new boson announcement !!

Great day for the 20+ years' project !!!

CERN-PH-EP-2012-218
Submitted to: Physics Letters B

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

IS THIS THE MSM BOSON ???

i) is this the Minimal Standard Model boson?? answering this question will take time and many precision measurements - with the Higgs mass known, all SM couplings can now be calculated
ii) there remain MANY unsolved problems in SM - still plenty to understand and search for
(personally, I think it would be much more interesting if Higgs boson were not there...or if the new-found particle is NOT a Minimal Standard Model boson)

STANDARD MODEL - MANY OUTSTANDING QUESTIONS

- why so many (26) free parameters: all masses, all couplings, all mixing angles and CP - violating phases
- why 6 quarks and 6 leptons - is there an additional symmetry?
- why quarks and and leptons come in three pairs (generations)?
- why is CP not an exact symmetry (or why are laws of physics not symmetrical between matter and antimatter?) perhaps related to why is our Universe matterdominated?
- what is Dark Matter which seem to be 5-6 times more prevalent in the Universe than ordinary matter (27% vs 5\%)?
- HOW TO INCLUDE GRAVITY ???
- Standard Model just a low-energy
approximation...

STANDARD MODEL - MANY OUTSTANDING QUESTIONS

$$
\begin{aligned}
& \mathcal{L}_{S M}=-\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a}-g_{s} f^{a b c} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c}-\frac{1}{4} g_{s}^{2} f^{a b c} f^{a d e} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{e}-\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-M^{2} W_{\mu}^{+} W_{\mu}^{-}- \\
& \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0}-\frac{1}{2 c_{w}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu}-i g c_{w}\left(\partial_{\nu} Z_{\mu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-Z_{\nu}^{0}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-\right.\right. \\
& \left.\left.W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+Z_{\mu}^{0}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-i g s_{w}\left(\partial_{\nu} A_{\mu}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-A_{\nu}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-\right.\right. \\
& \left.\left.W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+A_{\mu}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-}+ \\
& g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-}-Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w}^{2}\left(A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}\right)+ \\
& g^{2} s_{w} c_{w}\left(A_{\mu} Z_{\nu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-\frac{1}{2} m_{h}^{2} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}- \\
& M^{2} \phi^{+} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}-\frac{1}{2 c_{w}^{2}} M^{2} \phi^{0} \phi^{0}-\beta_{h}\left(\frac{2 M^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right)+ \\
& \frac{2 M^{4}}{g^{2}} \alpha_{h}-g \alpha_{h} M\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right)- \\
& \frac{1}{8} g^{2} \alpha_{h}\left(H^{4}+\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right)-g M W_{\mu}^{+} W_{\mu}^{-} H- \\
& \frac{1}{2} g \frac{M}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left(W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right)+ \\
& \frac{1}{2} g\left(W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)+W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right)+\frac{1}{2} g \frac{1}{c_{w}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)-\right. \\
& i g \frac{s_{w}^{2}}{c_{w}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-i g \frac{1-2 c_{w}^{2}}{2 c_{w}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+ \\
& i g s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)-\frac{1}{4} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left(H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right)- \\
& \frac{1}{8} g^{2} \frac{1}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right)-\frac{1}{2} g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)- \\
& \frac{1}{2} i g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-\right. \\
& \left.W_{\mu}^{-} \phi^{+}\right)-g^{2} \frac{s_{w}}{c_{w}}\left(2 c_{w}^{2}-1\right) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}-g^{2} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}+\frac{1}{2} i g_{s} \lambda_{i j}^{a}\left(\bar{q}_{i}^{\sigma} \gamma^{\mu} q_{j}^{\sigma}\right) g_{\mu}^{a}-\bar{e}^{\lambda}\left(\gamma \partial+m_{e}^{\lambda}\right) e^{\lambda}- \\
& \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda}-\bar{u}_{j}^{\lambda}\left(\gamma \partial+m_{u}^{\lambda}\right) u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}\left(\gamma \partial+m_{d}^{\lambda}\right) d_{j}^{\lambda}+i g s_{w} A_{\mu}\left(-\left(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}\right)+\frac{2}{3}\left(\bar{u}_{j}^{\lambda} \gamma^{\mu} u_{j}^{\lambda}\right)-\frac{1}{3}\left(\bar{d}_{j}^{\lambda} \gamma^{\mu} d_{j}^{\lambda}\right)\right)+ \\
& \frac{i g}{4 c_{w}} Z_{\mu}^{0}\left\{\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{d}_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{2}-1-\gamma^{5}\right) d_{j}^{\lambda}\right)+\left(\overline { u } _ { j } ^ { \lambda } \gamma ^ { \mu } \left(1-\frac{8}{3} s_{w}^{2}+\right.\right.\right. \\
& \left.\left.\left.\gamma^{5}\right) u_{j}^{\lambda}\right)\right\}+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left(\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{\kappa}\right)\right)+ \\
& \frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left(\left(\bar{e}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{d}_{j}^{\kappa} C_{\kappa \lambda}^{\dagger} \gamma^{\mu}\left(1+\gamma^{5}\right) u_{j}^{\lambda}\right)\right)+ \\
& \frac{i g}{2 \sqrt{2}} \frac{m_{e}^{\lambda}}{M}\left(-\phi^{+}\left(\bar{\nu}^{\lambda}\left(1-\gamma^{5}\right) e^{\lambda}\right)+\phi^{-}\left(\bar{e}^{\lambda}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)\right)-\frac{g}{2} \frac{m_{e}^{\lambda}}{M}\left(H\left(\bar{e}^{\lambda} e^{\lambda}\right)+i \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)\right)+ \\
& \frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1-\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1+\gamma^{5}\right) d_{j}^{\kappa}\right)+\right. \\
& \frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{d}^{\lambda}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1+\gamma^{5}\right) u_{j}^{\kappa}\right)-m_{u}^{\kappa}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{\kappa}\right)-\frac{g}{2} \frac{m_{u}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)-\frac{g}{2} \frac{m \lambda}{M} H\left(\bar{d}_{j}^{\lambda} d_{j}^{\lambda}\right)+\right. \\
& \frac{i g}{2} \frac{m_{u}^{\lambda}}{M} \phi^{0}\left(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}\right)-\frac{i g}{2} \frac{m_{d}^{\lambda}}{M} \phi^{0}\left(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}\right)+\bar{G}^{a} \partial^{2} G^{a}+g_{s} f^{a b c} \partial_{\mu} \bar{G}^{a} G^{b} g_{\mu}^{c}+\bar{X}^{+}\left(\partial^{2}-M^{2}\right) X^{+}+\bar{X}^{-}\left(\partial^{2}-\right. \\
& \left.M^{2}\right) X^{-}+\bar{X}^{0}\left(\partial^{2}-\frac{M^{2}}{c_{w}^{2}}\right) X^{0}+\bar{Y} \partial^{2} Y+i g c_{w} W_{\mu}^{+}\left(\partial_{\mu} \bar{X}^{0} X^{-}-\partial_{\mu} \bar{X}^{+} X^{0}\right)+i g s_{w} W_{\mu}^{+}\left(\partial_{\mu} \bar{Y} X^{-}-\right. \\
& \left.\partial_{\mu} \bar{X}^{+} Y\right)+i g c_{w} W_{\mu}^{-}\left(\partial_{\mu} \bar{X}^{-} X^{0}-\partial_{\mu} \bar{X}^{0} X^{+}\right)+i g s_{w} W_{\mu}^{-}\left(\partial_{\mu} \bar{X}^{-} Y-\partial_{\mu} \bar{Y} X^{+}\right)+i g c_{w} Z_{\mu}^{0}\left(\partial_{\mu} \bar{X}^{+} X^{+}{ }_{-}\right. \\
& \left.\partial_{\mu} \bar{X}^{-} X^{-}\right)+i g s_{w} A_{\mu}\left(\partial_{\mu} \bar{X}^{+} X^{+}-\partial_{\mu} \bar{X}^{-} X^{-}\right)-\frac{1}{2} g M\left(\bar{X}^{+} X^{+} H+\bar{X}^{-} X^{-} H+\frac{1}{c_{w}^{2}} \bar{X}^{0} X^{0} H\right)+ \\
& \frac{1-2 c_{w}^{2}}{2 c_{w}} \operatorname{igM}\left(\bar{X}^{+} X^{0} \phi^{+}-\bar{X}^{-} X^{0} \phi^{-}\right)+\frac{1}{2 c_{w}} \operatorname{igM}\left(\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right)+ \\
& i g M s_{w}\left(\bar{X}^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right)+\frac{1}{2} i g M\left(\bar{X}^{+} X^{+} \phi^{0}-\bar{X}^{-} X^{-} \phi^{0}\right) .
\end{aligned}
$$

SM problems: spontaneous breaking of the electroweak symmetry by Higgs mechanism

This part of SM is the only remaining untested part of SM. Higgs-boson like particle has been observed by ATLAS and CMS in 2012; remember: the EW symmetry could be broken in a different way, not necessarily like in MSM

Difficulties with the elementary Higgs sector: suppose that SM is just an effective theory and that NEW physics is at some scale. The quantum corrections to fermion masses would depend only logarithmically on scale Λ :

$$
\delta m_{f} \sim m_{f} \ln \Lambda
$$

SM problems: spontaneous breaking of the electroweak symmetry by Higgs mechanism

Difficulties with the elementary Higgs sector : quantum corrections to scalar particle (Higgs) exhibit quadratic dependence on scale Λ, making Higgs mass VERY sensitive to the scale of the NEW physics => fine tuning problem
problem). This fine tuning has to be performed for each order of perturbation theory

- this is a very unpleasant feature of MSM

$$
m_{H}^{2}=-m_{0}^{2}+g^{2} \Lambda^{2}
$$

SM cannot be valid for very large momenta, the scale Λ serves as a cutoff above which physics not contained in SM becomes important. At least one such scale, Planck scale at which gravity becomes relevant, $\Lambda=\mathrm{O}\left(10^{19}\right) \mathrm{GeV}$, must be present in any theory.

SM problems: spontaneous breaking of the electroweak symmetry by Higgs mechanism

The original problem of how to give masses to weak gauge bosons in a gauge invariant way was only partially solved by the Higgs mechanism, and the problem was transferred to a new level, where the new puzzle is how to keep Higgs mass stable against large quantum corrections from the higher energy scales

A method of controlling Higgs mass divergence other than fine tuning of parameters would be very welcomed

supersymmetry - the most elegant solution?

- Interesting fact about the scalar mass divergencies from virtual particle loops (quantum corrections) is that the
- virtual fermions and virtual bosons contribute with opposite signs and would cancel each other exactly if for every boson there was a fermion of the same mass and charge - divergencies would cancel without any fine tuning and in all orders of perturbation theory !!
- supersymmetry is such a symmetry: it connects bosons to fermions, it introduces a fermionic partner to every boson and vice-versa, identical in all quantum numbers;
- supersymmetry is a space-time symmetry

SUPERSYMMETRY

Standard particles

SUSY particles

supersymmetry - the most elegant solution?

- If supersymmetry were real, it must be somehow broken as we have not yet observed superparticles. while still keeping the ability to solve the gauge hierarchy problem. Not easy, depends on the scale at which SUSY is broken, and on how it is broken. To some extent it remains still an open question
- SUSY provides a natural explanation for "dark matter"
- Local supersymmetry could also be a viable theory of gravity - supergravity.

gauge theories and extra dimensions

- Geometrical picture (from ~1970:Atiyah, Singer, Donaldson, Witten, Bott...)
- In the mathematical language of fibre bundles, a gauge potential (e.g. 4-vector potential of electrodynamics, or Yang-Mills potentials for electroweak theory) is a connection in a fibre bundle, an abstract state-space of internal structure, described by a given gauge group: U(I) of EM, SU(2) of Yang-Mills theory, SU(3) for strong - superimposed on space-time. The curvature of the connection is the gauge field (e.g the field strength tensor $\mathrm{F}_{\mu \nu}$ of electrodynamics).

gauge theories and extra dimensions

- It is a geometrical picture, very similar to Einstein's gravity, except the distortion measured by curvature is not taking place in the geometry of space-time but in the geometry of the more-dimensional "total space", imposed over space-time.
- Gauge (phase) transformations are analogous to co-ordinate transformations in Riemannian geometry of Einstein's General Relativity
- We may be living in a world which is more than just 4 dimensional (IO, II ??), except we don't "see" beyond the familiar 4 space-time dimensions

gauge theories and extra dimensions

- In 1980 Scherk, Schwartz and Cremmer revived interest in Kaluza-Klein theories. They advocated that the extra dimensions should be regarded as physical, not abstract, just like the four dimensions that we are aware of.
- Cremmer and Scherk suggested that the difference between the four observed and the unobserved dimensions has its origin in a process of "spontaneous compactification" of the extra dimensions.

gauge theories and extra dimensions

- I98I Witten noticed a remarkable fact (could be a concidence): the minimum number of dimensions for a manifold with $\operatorname{SU}(3) \times S U(2) \times U(1)$ symmetry is 7 , so to construct a Kaluza-Klein theory in which those symmetries arise as components of gravity in more than 4 dimensions, one must have at least II dimensions. At the same time, II is probably the maximum number of dimensions for supergravity.
- 1984 Green and Schwartz: proved consistency of string theories only in 26 dimensions (bosonic) and I0 (supersymmetric)
- I990 Sen, Duff, Witten: M-theory - in II dimensions, unites all 5 types of 10 dimensional superstring theories

gauge theories and extra dimensions

- We may be living in a world which is more than just 4 dimensional (I0, II ??), except we don't "see" beyond the familiar 4 space-time dimensions
- The remaining problem is to include and quantize gravity - lots of progress, combining geometry, topology and gauge theories -
non-commutative geometry (non-commutativity in the additional 6 mod 8 dimensions - Alain Connes)
loop quantum gravity

Prof. George Leger (with my help) may teach a course on "Geometry, Topology and Gauge Fields" in Spring 2014

Also, Prof. Loring Tu at Tufts is an expert in topology and differential geometry, he teaches fantastic courses on "Manifolds" and related topics...

BEYOND STARDARD MODEL??

- SUPERSYMMETRY
- GRAND UNIFIED THEORIES based on larger symmetry groups, e.g. $\operatorname{SU}(5), \mathrm{SO}(\mathrm{I} 0), \mathrm{E}_{8}$, Monster group...
- extensions of Kaluza-Klein theory, string theory, superstring theory, branes, M-theory, loop quantum gravity, other quantum gravity theories?
- TECHNICOLOR ??
- finding Higgs does not solve SM problems
- EXPERIMENTAL DATA NEEDED BADLY!!

Large hadron Gollider ait CERN

European Centre for Particle Physics, Geneva, Smizerland

Superconducting Proton Accelerator and Collider

installed in a 27 km circumference underground tunnel (tunnel cross section diameter 4 m) at. CERN
Tunnel was built for LEP collider in 1985
First operation in Fatt2008
1984 : First studies for a higheenergy .pP collider in the LEP tunnel
1993 : cancellation of SSC
1994: LHC approved by the CERN Council
1994 : top equark discovered at the Tevatron
1996: start of construction of LHC machine and experiments 2000 : closing of LEP2
2003: Start of LHC machine and experiments installation $2009: 23$ November: first LHC collisions ($\sqrt{\mathrm{s}}=900 \mathrm{GeV}$) 20.10:30 Marchefirst collisions at $\sqrt{s}=7 \mathrm{TeV}$ beginning of a long physics programme 2011 : hints of a new particle of mass $\sim 125 \mathrm{GeV}_{3}$
 20.12. 1st May: first collisions at $\sqrt{s}=8 \mathrm{TeV}$

[^0]
ATLAS DETECTOR AT LHC

ATLAS DETECTOR AT LHC

ATLAS TRACKING DETECTORS

ATLAS CALORIMETERS

ATLAS MUON SPECTROMETER

ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

ATLAS COMPUTING

ATLAS COLLABORATION

ATLAS RESULTS ARE A TRULY COLLABORATIVE EFFORT OF MANY THOUSANDS OF PEOPLE, PHYSICISTS, ENGINEERS, PROGRAMMERS, TECHNICIANS AND STUDENTS....
AND MANY FUNDING AGENCIES INVOLVED!!

ATLAS SOFTWARE - muon geometry and tracking tools

- muon tracking geometry

Šárka Todorova-Nová with help from
Sam Hamilton, Krzysztof Sliwa, Jeff Wetter, Martin Wolter, Andrzej Zemla

MUON TRACKING GEOMETRY

I/ ATLAS (combined, static) frame

- system of volumes covering the whole detector
- MS enveloping ID/Calo

3/ inert material
(toroids, shieldings,
feets, supports, infrastructure ..)
Automatized transcript from the database.

MUON TRACKING TOOLS

Common tracking tools: extrapolator+propagator

Surface-based (local) parameters: 5 free parameters
-> error matrices simplified (wrt. 6 global coordinates)

The art of finding the sequence of intersections with dense volumes boundaries and sensitive layers in rapidly fluctuating magnetic field - a lot of pioneering work done in MS

A number of simplified material options coded

Fast simulation : realistic detector response (hit based)

What can we do with the ISF ...

delivered luminosity-

Luminosity: measured with forward detectors, calibrated with beam separation scans Current uncertainty: 3.6\%

pileup - not much difficulty in 2010-20 I I TeV running

Collision Event at 7 TeV with 2 Pile Up Vertices

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

2009-11-23, 14:22 CET Run 140541, Event 171897

pileup - a difficulty in 20128 TeV running

Z candidate events 2012 data, 20 (left) and 25 (right) reconstructed vertices

pileup

Running with 50 ns bunch spacing (rather than 25 ns) results in $2 x$ larger pile-up for the same luminosity - lots of effort devoted to prepare for 2012 running - trigger and off-line algorithms which are pile-up "robust" needed to be developed. In general:
sizable impact on jets, E_{T} miss and tau reconstruction as well as on trigger rates and computing, no significant impact on tracking, muons, electrons and photons

Improved modeling of in-time and out-of-time pile-up in MC simulations
Computing challenges due to $2 x$ higher trigger rates and large event sizes ($10-50$ sec/event for $\mu=5-50$)

detector operation efficiency, data quality

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	95.0%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	98.3%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	100%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	96.0%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	98.2%

$\geq 95 \%$ for all systems

ATLAS p-p run: April-Sept. 2012

Inner Tracker				Calorimeters				Muon Spectrometer			Magnets	
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid		
100	99.3	99.5	97.0	99.6	99.9	99.8	99.9	99.9	99.7	99.2		

All good for physics: 93.7\%

 calorimeter will partially be recovered in the future.

trigger

Baseline menu designed for $L=8 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and mostly unchanged during 20 I 2 run
Average trigger table during Stable Beams:

(from A. Hoecker slides - ATLAS Status Report - LHCC, Dec 5, 2012

ATLAS - MAIN RESULTS

- precision measurements and tests of Standard Model QCD studies......

WW,WZ, ZZ, W $\gamma, Z \gamma, \gamma \gamma \ldots . . t t$, single top most important background to most Higgs and new physics searches

- searches for physics "BEYOND the STANDARD MODEL"

- Higgs search: just one? two? spin-parity? Is this the MSM boson?

QCD jet studies

QCD track and jet studies

Helix structure of the fragmentation string - Dr Sarka Todorova

Evidence for helix structure of QCD string should lead to improved description of fragmentation models - will benefit ALL analyses

Understanding of QCD effects is essential for all precision measurements

Monojet analysis - limits on WIMP prof. Beauchemin

The idea of helix string [first proposed in JHEP09(1998)|4.]
Bo Anderson et al.:"'ls there a screwiness at the end of parton cascade ?"
Replace the standard Lond string

string tension $\kappa \approx \mid \mathrm{GeV} / \mathrm{fm}$ (longitudinal)

with a helix-like ordered gluon chain \& suppress $\mathrm{P}_{\boldsymbol{\top}}$ in the tunneling :

transverse momentum of a direct hadron ENTIRELY
constrained by the spiral
structure of the QCD string (2 degrees of freedom removed from the modelling)

top studies

Top is heaviest particle in the SM, and it may be playing a special role in EW symmetry breaking.

Most physics beyond the SM will show up as excess of events above the SM including 6 quarks -

TOP PRODUCTION HASTO BE UNDERSTOOD REALLY WELL AS IT IS THE MOST IMPORTANT BACKGROUND FOR MANY OF "NEW PHYSICS" SIGNATURES

Top studies may be the best testing ground for NLO and NNLO calculations (recently lots of progress - Czakon and Mitov finished qq and qg NNLO -arXiv:I2|0.6832, gg - soon, may explain the ttbar charge asymmetry puzzle)

Samuel Hamilton, Jeff Wetter, Benjamin Whitehouse, Krzysztof Sliwa
Top polarization, top cross section with a new multidimensional analysis method - event classifier based on support vector machines

top studies

Top quark in addition to being of fundamental importance on their own, provide opportunity to test QCD calculations and improve tuning of MC - essential for all analyses

ZZ studies

Tests of NLO SM calculations, good agreement.
Deviations could indicate physics beyond SM; neutral triple-gauge-couplings zero in SM

WZ studies

Tests of NLO SM calculations, good agreement. Deviations could indicate physics beyond SM; triple-gauge-couplings;

status of ATLAS electroweak and top measurements

inner error bars - statistical outer error bars - total

ATLAS Preliminary
LHC pp $\sqrt{s}=7 \mathrm{TeV}$

- Theory
- Data $\left(\mathrm{L}=0.035-4.6 \mathrm{fb}^{-1}\right)$

LHC pp $\sqrt{s}=8 \mathrm{TeV}$
Theory

- Data ($\mathrm{L}=5.8-20 \mathrm{fb}^{-1}$)

	Z	t	t	WW	WZ	Wt
W	ZZ					

- important measurements on their own
- but, most also irreducible background to Higgs searches

SUSY:

SUSY particles are expected to be produced strongly in pairs, and their decay chains invariably include a LSP, usually neutral. The typical signatures are final states with variable number of jets, also multi-leptons, same-sign leptons - almost always with large MET. Large mixing in $3^{\text {rd }}$ generation of SUSY sfermions is expected, with at least one of the top squarks expected to be light.

The Minimal Supersymmetric SM is difficult to reconcile with $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$, as it predicts a smaller mass for its lightest neutral Higgs, h. Large part of MSSM parameter space is excluded.

In the NMSSM, a singlet chiral superfield added to MSSM allows to alleviate the μ and the lightest Higgs mass $\left(H_{1}\right)$ problem. The model has 7 physical Higgses (MSSM has 5).

Many searches for physics beyond SM look for SUSY particles.

SUSY: stop searches

SUSY: stop searches

$$
\text { stop pair }->\text { b+W*+LSP }
$$

stop pair $->$ top+LSP

Exclusion limits at $95 \% \mathrm{CL}$ are shown in the ${ }^{\sim} \mathrm{t}_{1}-{ }^{\sim} \chi_{1}{ }_{1}$ mass plane.
These plots overlay contours belong to different stop decay channels, different sparticle mass hierarchies, and simplified decay scenarios - one should be careful when interpreting

SUSY: stop searches

SUSY searches -squarks and gluinos

DATA / MC

squarks and gluinos, strongly produced $\left.\right|^{\text {st }}$ and $2^{\text {nd }}$ generation

2 jets + MET
4 jets + MET
6 jets + MET
model dependent limits ($\sim \mathrm{TeV}$ scale)

SUSY searches

"natural" SUSY, R-parity violating, and searches for long-lived particles

ATLAS SUSY Searches* - 95\% CL Lower Limits (Status: Dec 2012)

 MSUGRA/CMSSM : 1 lep + j's $+E_{T \text { ms }}$ Pheno model : 0 lep $+j$'s $+E_{T}$ Pheno model : 0 lep +j 's $+E_{T, \text { miss }}$ Gluino med. $\tilde{\chi}^{ \pm}\left(\tilde{\mathrm{g}} \rightarrow \mathrm{q} \overline{\mathrm{q}} \widetilde{\chi}^{ \pm}\right): 1$ lep $+\mathrm{j}^{\prime} \mathrm{s}+E_{T \text {,miss }}$ GMSB (INLSP) : 2 lep (OS) $+j^{\prime \prime s}+E^{T, \text { miss }}$ GMSB (τ NLSP): $1-2 \tau+0-1$ (ep $+j s+E^{T, \text { miss }}$ GGM (bino NLSP) : $\gamma \gamma+E^{T, \text { miss }}$
GGM (wino NLSP) : $\gamma+$ lep $+E^{T, \text { miss }}$
GGM (higgsino-bino NLSP) : $\gamma+\mathrm{b}+E_{T \text { miss }}^{T, \text { miss }}$ GGM (higgsino NLSP) : $Z+$ jets $+E_{T, \text { miss }}^{T, \text { miss }}$ Gravitino LSP : 'monojet' $+E_{T \text {,miss }}$ $\underset{\tilde{g} \rightarrow \mathrm{~b}}{\tilde{\mathrm{~g}}} \tilde{\tilde{\gamma}}_{01}^{0}($ virtual $\tilde{\mathrm{b}}): 0$ lep $+3 \mathrm{~b}-\mathrm{j}$'s $+E_{T, \text { miss }}$ $\left.\tilde{\mathrm{g}} \rightarrow \mathrm{tt}{\underset{\sim}{N}}^{(}\right)$virtual $\left.\tilde{t}\right): 2$ lep $(\mathrm{SS})+\mathrm{j}$'s $+E_{T, \text { miss }}$ $\mathrm{g}_{\rightarrow} \rightarrow t \tilde{\chi}_{1}^{0}($ virtual $\tilde{t}): 3$ lep +j 's $+E_{T, \text { miss }}$ $\tilde{g}_{\underset{\sim}{\operatorname{s}} \rightarrow+\tilde{t}_{1}}($ virtualt $\tilde{t}): 0$ lep + multi-j's $+E_{T, \text { miss }}$ $\tilde{\mathrm{g}} \rightarrow \mathrm{tt} \mathrm{\chi}$ (virtual $\tilde{\mathrm{t}}): 0$ lep +3 bj 's $+E_{T \text {,miss }}$
$\tilde{\mathrm{b}}, \mathrm{b}_{1} \rightarrow \mathrm{~b} \tilde{\mathrm{x}}_{1}^{0}: 0$ lep +2 - $\mathrm{b}-\mathrm{jets}+E_{T, \text { mis }}$ $\tilde{\mathrm{b}} \mathrm{b}, \widetilde{\mathrm{b}}^{+} \rightarrow t \widetilde{\chi}^{ \pm}: 3$ lep +j 's $+E_{T}$ $\tilde{t} \tilde{t}$ (light), $\tilde{\mathrm{t}} \rightarrow \mathrm{b} \tilde{\mathrm{x}}^{ \pm}: 1 / 2^{1}$ lep (+b -jet) $+E_{T, \text { miss }}$ tt (medium), $\mathfrak{\mathrm { t }} \rightarrow \mathrm{b} \tilde{\chi}^{ \pm}: 1$ lep +b -jet $+E_{T}$, $\tilde{\mathrm{t}}$ (medium), $\tilde{\mathrm{t}} \rightarrow \mathrm{b} \tilde{\chi}_{1}^{ \pm}: 2$ lep $+E_{T, \text { miss }}^{T, \text { miss }}$ $\tilde{\sim}_{0}^{n}, \tilde{t} \rightarrow t \tilde{\chi}_{X}^{0}: 1$ lep +b -jet $+E_{T, \text { mis }}$ $\tilde{t} t, \tilde{t} \rightarrow t \tilde{\chi}^{0}: 0 / 1 / 2 \operatorname{lep}(+\mathrm{b}-\mathrm{jets})+E_{T, \text { mis }}$ $\begin{aligned} & \mathrm{tt}, \mathrm{t} \rightarrow \mathrm{t} \mathrm{\chi} \\ & \mathrm{tt}: 0 / 1 / 2 \operatorname{lep}(+\mathrm{b}-\mathrm{jets})+E_{T, \text {, miss }}\end{aligned}$ tt (natural GMSB) :
\sim

 : 3 lep $+E^{T, \text { m }}$
 Stable \tilde{g}^{1} R-hadrons: low $\beta, \beta \gamma$ (full detector) Stable $\widetilde{\mathrm{t}}$ R-hadrons : low $\beta, \beta \gamma$ (full detector)

GMSB : stable $\widetilde{\tau}$ $\tilde{\chi}_{1} \rightarrow \mathrm{qqu}(\mathrm{RPV}): u+$ heavy displaced vertex

LFV : pp $\rightarrow \tilde{v}_{\tau}+\underset{\sim}{\sim} \tilde{v}_{\tau} \rightarrow e+\mu$ resonance LFV: pp $\rightarrow \tilde{v}_{v}+X, \tilde{v}_{\tau} \rightarrow \mathrm{e}(\mu)+\tau$ resonance 2 Bilinear RPV CMSSM : 1 lep +7 j's $+E_{T, \text { miss }}$ $\tilde{\chi}_{1}^{+} \widetilde{\chi}_{,}, \widetilde{\chi}_{1}^{+} \rightarrow \tilde{W}^{2} \tilde{\chi}^{0} \tilde{\chi}_{0}^{0} \rightarrow e v_{\mu}$, e $\mu v=4$ lep $+E_{T, \text { miss }}$
$\tilde{L}_{\mathrm{L} L}, \tilde{\mathrm{~L}}_{\mathrm{L}} \rightarrow \tilde{\bar{\chi}}_{1}^{0}, \tilde{\tilde{\chi}}_{1}^{0} \rightarrow \operatorname{eev}_{\mu}, \mathrm{e} \mu v^{e}: 4$ lep $+E_{T, \text { miss }}$ Scalar gluon : 3 -jet resonance pair WIMP interaction (D5, Dirac χ) : 'monojet' $+E$ pair

ical signal cross section uncertainty.

exotic: ee, $\mu \mu, W Z$

Searched for resonanses (new bosons?) in invariant mass spectra of dileptons, WZ

ATLAS-COM-CONF-2OI3-OMFITeV]

[^1]
exotic: $\mu^{ \pm} \mu^{ \pm}$and $\gamma \gamma$ searches

Randall-Sundrum graviton with strong coupling to SM particles would decay to a photon pair

Doubly charged Higgs would show up as a narrow like-sign resonance
$M(G)>2.06 \mathrm{TeV}\left(\mathrm{k} / \mathrm{M}_{\mathrm{pl}}=0 . \mathrm{I}\right)$

searches or new physics specific models and model independent studies

Large ED (ADD) : monojet $+E_{T \text {,miss }}$ Large ED (ADD) : monophoton $+E_{T, \text { miss }}$ Large ED (ADD) : diphoton \& dilepton, $m_{y \gamma / \|}$

UED : diphoton $+E_{T, \text { miss }}$ S^{1} / Z_{2} ED : dilepton, $m_{\|}$
RS1 : diphoton \& dilepton, $m_{y \gamma / ॥}$
RS1: ZZ resonance, $m_{\text {U }}$.
RS1: WW resonance, m_{T} $R S g_{K K} \rightarrow t t(B R=0.925): t t \rightarrow$ l+jets, m ADD BH $\left(M_{T H} / M_{\mathrm{D}}=3\right): S S$ dimuon, $N_{\text {ch. part. }}^{\text {tiboosted }}$ ADD BH $\left(M_{T H} / M_{D}=3\right):$ leptons + jets, Σp_{T}

Quantum black hole : dijet, $\mathrm{F}_{\chi}\left(m_{\mathrm{ij}}{ }^{\top}\right)$ "qqq" contảct interaction : $\chi\left(m_{j}\right)$ qqII Cl : ee \& $\mu \mu, m$
uutt $\mathrm{Cl}: \mathrm{SS}$ dilepton + jets $+E_{T, \text { miss }}$ Z゙' (SSM) : $m_{\text {ee } / \mu}$ $Z^{\prime}(S S M): m_{\tau \tau}$ $\mathrm{W}^{\prime}(\mathrm{SSM}): m_{\mathrm{T}, \mathrm{e} / \mu}$ $W^{\prime}(\rightarrow$ tq, $g=1): m_{\text {tq }}$ $W_{R}^{\prime}\left(\rightarrow \mathrm{tb}, \mathrm{SS}_{\mathrm{B}}^{\mathrm{B}}\right): m_{\mathrm{tb}}^{\mathrm{tq}}$ $\mathrm{W}^{*}: m_{\mathrm{T}, \mathrm{e}}^{\text {io }}$
Scalar LQ pair $(\beta=1)$: kin. vars. in eejj, evjj. Scalar LQ pair ($\beta=1$) : kin. vars. in $\mu \mu \mathrm{jj}, \mu v \mathrm{vj}$ Scalar LQ pair ($\beta=1$) : kin. vars. in $\tau \tau j \mathrm{jj}$, тvjj
$4^{\text {th }}$ generation : $b^{\prime} b^{\prime}\left(T \quad T_{51}\right) \rightarrow W+W t$ New quark $\mathrm{b}^{\prime}: \mathrm{b}^{5 / b^{5 / 3} \rightarrow \mathrm{Zb}+\mathrm{X}, m^{5 b}}$ Top partner : TT $\rightarrow \mathrm{tt}+\mathrm{A}_{0} \mathrm{~A}_{0}$ (dilepton, $\mathrm{M}_{\mathrm{T} 2}^{\mathrm{Zp}}$)

Vector-like quark: CC, $m_{\text {lvq }}^{\text {² }}$ Vector-like quark : NC, $m_{\| q}$

Excited quarks : dijet resonance, $m_{i j}$ Excited lepton : $\mathrm{l}-\gamma$ resonance, m Techni-hadrons (LSTC) : dilepton, $m_{\text {ee } \mu \mu}$ Techni-hadrons (LSTC) : WZ resonance (vIII), $m_{T, \mathrm{Wz}}^{\text {ee/ }}$ Major. neutr. (LRSM, no mixing) : 2-lep + jets
W_{R} (LRSM, no mixing) : 2-lep + jets $H^{ \pm \pm}$(DY prod., $\mathrm{BR}\left(\mathrm{H}^{+ \pm} \rightarrow \mathrm{II}\right)=1$) : SS ee (uu), m $\mathrm{H}_{\mathrm{L}}^{+ \pm}$(DY prod., $\left.\mathrm{BR}\left(\mathrm{H}^{+ \pm} \rightarrow \mathrm{e} \mu\right)=1\right): \mathrm{SS}$ eu, $m_{\text {eu }}{ }^{\text {I }}$

Color octet scalar : dijet resonance, $\stackrel{\text { em }}{\text { ji }}^{\downarrow}$

ATLAS Exotics Searches* - 95\% CL Lower Limits (Status: HCP 2012)

Exotics Models:

Extra dimensions:
RS KK Graviton
(dibosons, dileptons, diphotons)
RS KK gluons (top antitop)
ADD (monojets, monophotons, dileptons, diphotons)
KK Z/gamma boosns (dileptons)
Grand Unification symmetries
(dielectons, dimuons, ditaus)
Leptophobic topcolor Z' boson (dilepton ttbar, $\mathrm{l}+\mathrm{j}$, all had)
S8- color octet scalars (dijets)
String resonance (dijets,)
Benchmark Sequential SM Z', W'
W' (lepton+MET, dijets, tb)
W^{*} (lepton+MET, dijets)
Quantum Black Holes (dijet)
Black Holes (l+jets, same sign leptons)
Technihadrons (dileptons, dibosons)
WIMPs (Monojet, monophotons)

Excited fermions

q^{*}, Excited quarks (dijets, photon+jet)
I^{*}, excited leptons (dileptons+photon)
Leptoquarks (Ist, 2nd, 3rd generations)
Higgs -> hidden sector
(displaced vertices, lepton jets)
Contact Interaction
llqq Cl
4 q Cl (dijets)
Doubly charged Higgs (
multi leptons, same sign leptons)
4th generation
$\mathrm{t}^{\prime}->\mathrm{Wb}, \mathrm{t}^{\prime}->\mathrm{ht}, \mathrm{b}$ '-Zb, b'->Wt (dileptons, same sign leptons, $1+\mathrm{J}$)
VLQ-Vector Like quarks
Magnetic Monopoles (and HIP)
Heavy Majorana neutrino and RHW

MSM Higgs search and properties

gluon fusion - largest cross sections, but also large backgrounds
associated production - smaller but cleaner
VBF - even smaller but may help to improve sensitivity

Higgs cross section higher $\sim 1.3 \times$ at 8 TeV irreducible backgrounds ($\mathrm{Y} \mathrm{Y}, \mathrm{WW}, \mathrm{WZ}, \mathrm{ZZ}$) also higher, but a bit less
reducible backgrounds (top, Zbb) higher even a bit more
increase in sensitivity at 8 TeV
\rightarrow I.Ix - I.I5x

MSM Higgs search and properties

Most sensitive channels for $120<M_{H}<130 \mathrm{GeV}$:

H ->ZZ**->4I,
H $\rightarrow \gamma \gamma$
H->WW*->| $\nu \mid \nu$
H-> $\tau \tau$

By some strange coincidence,
$M_{H}=125 \mathrm{GeV}$ is one of the best
places to find Higgs and study its
properties (from the experimental
point of view) - many channels
with relatively large branching
fractions

MSM Higgs search and properties

$M_{41}=124.3+0.6-0.5$ (stat) $+0.5-0.3$ (syst) GeV
$M_{r y}=126.8 \pm 0.2$ (stat) ± 0.7 (syst) GeV

$$
\begin{aligned}
& M_{H}=125.5 \pm 0.2(\text { stat }) \\
& (41+\gamma \gamma) \quad+0.5-0.6(\text { syst }) \mathrm{GeV}
\end{aligned}
$$

$\Delta M=2.3+0.6-0.7$ (stat) ± 0.6 (syst) GeV

MSM Higgs search and properties

Higgs Boson Decay	μ $\left(m_{H}=125.5 \mathrm{GeV}\right)$
$V H \rightarrow V b b$	-0.4 ± 1.0
$H \rightarrow \tau \tau$	0.8 ± 0.7
$H \rightarrow W W^{(*)}$	1.0 ± 0.3
$H \rightarrow \gamma \gamma$	1.6 ± 0.3
$H \rightarrow Z Z^{(*)}$	1.5 ± 0.4
Combined	1.30 ± 0.20

ATLAS-COM-CONF-2013-014
8\%- rectangular pdfs

MSM Higgs search and properties

With the M_{H} known, all couplings can be calcutated within SM \rightarrow is this a SM Higgs or not?
Expected for $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$ at 8 TeV
ggF $\quad 19.5$ pb fermion couplings ($\mathrm{Y} \mathrm{V}, \mathrm{ZZ}, \mathrm{WW}^{*}$)
VBF $\quad 1.6 \mathrm{pb}$ boson couplings ($\mathrm{p} \mathrm{Y}, \mathrm{ZZ}, \mathrm{WW}^{*}>=2$ jets)
VH $\quad 1.1 \mathrm{pb}$ boson couplings ($\mathrm{\gamma} \mathrm{Y}, \mathrm{ZZ}, \mathrm{WW}^{*}+\mathrm{W}, \mathrm{Z}$)
ttH $\quad 0.1 \mathrm{pb}$ fermions couplings

Evidence forVBF (~3.1 σ)
Measurements of relative production rates very important for establishing properties of a new boson

H -> WW*jj Vector Boson Fusion Jeff Wetter, Ben Whitehouse, Noah Kurinsky and Krzysztof Sliwa (analysis with svm event classifier)

[^2]

MSM Higgs search and properties

spin-parity compatible with J ${ }^{\mathrm{CP}}=0^{+}$(as in Minimal Standard Model)

```
H-> \gamma \gamma: spin 2 excluded at 2.8\sigma (100% gg)
    (spin | excluded, as well, of course)
H->4I: spin 0- excluded at >2 \sigma, spin 2 excluded at 1.5-3 \sigma (0-100% gg)
H}->>WW*: spin 2 excluded at 95-99% C.L (depending on %gg)
```


cms $\quad \mathrm{S} /(\mathrm{S}+\mathrm{B})$ Weighted Mass Distributions MVA and Cuts-Based Analysis Side by Side

- Sum of mass distributions for each event class, weighted by $\mathrm{S} /(\mathrm{S}+\mathrm{B})$
- B is integral of background model over a constant signal fraction interval

Weighting to Correctly Show S/(S+B)

An illustration: Not used to derive the quantitative Results

[^3]
$\mathrm{H} \rightarrow \gamma \gamma$: Couplings μ_{V} (VBF+VH) vs $\mu_{\mathrm{F}}(\mathrm{ggH}+\mathrm{tH})$ and Mass Determination

μ_{V} and μ_{F} are consistent, within 1 sigma, of SM prediction
Best Fit: Mass $=125.4 \mathrm{GeV} \pm 0.5$ (stat) ± 0.6 (syst.) GeV

CMs $/ H \Rightarrow Z Z\left({ }^{*}\right) \Rightarrow 4 e, 4 \mu, 2 e 2 \mu$ Candidates

 Mass SpectrumGood description of $Z \rightarrow 4 \mathrm{~L}$ Peak, and $Z Z$ continuum

Clear Signal Peak Near 126 GeV
Z $=4$ II Peak Provides Cross Check

Mass Fit and Coupling Factors μ_{V} and μ_{F}

1. 3D Fit $\left(M_{4 \mid,}, K_{D}, \delta M_{41}\right)$ for mass: $M=125.8 \pm 0.5$ (stat) ± 0.2 (syst) GeV
2. Momentum Scale, Resolution: Studied \& tuned in dilepton control samples
3. In Dijet category: P_{T} spectrum, V_{D} : used to disentangle prod. Mechanisms: Scale factors for Couplings to Vector Bosons μ_{v} (from VBF, ZH, WH) and to Fermions μ_{F} (from gg via quark loops, ttH)

Characterization of

 the Boson: the Mass- Assume one particle, use sub-channels with good mass resolution:
$\gamma \gamma$ (untagged), $\gamma \gamma(\mathrm{VBF}), \mathrm{ZZ}(4 \mathrm{I})$
- Do a likelihood scan for the Mass \& Signal Strength
- Results are self-consistent; can be combined
- To reduce model dependence, float cross sections in 3 channels; do 1D fit for a common mass:
$m_{x}=125.8 \pm 0.4$ (stat) ± 0.4 (syst) GeV

Compatibility: Among Channels and with SM Higgs boson

New (and older) results are compatible with the SM Higgs boson
Also Note Latest H $\rightarrow \gamma \gamma$ Result on Full Dataset: $\mu=0.78_{-0.26}^{+0.28}$ -0.26 p-values and Significance by Channel HCP

Excess at $\sim 125.8 \mathrm{GeV}$: Combined Significance 6.9 © High sensitivity, high mass resolution channels: $\gamma \gamma+41$

- ZZ \rightarrow 4I: 4.4 o Excess
- $\gamma \gamma \quad 4.0$ © Excess

	Expected σ	Observed σ
H \rightarrow ZZ	5.0	4.4
$\mathrm{H} \rightarrow \gamma \gamma$	2.8	4.0
$\mathrm{H} \rightarrow$ WW	4.3	3.0
$\mathrm{H} \rightarrow$ bb	2.2	1.8
$\mathrm{H} \rightarrow \tau \tau$	2.1	1.8
$\underset{\sim}{H} \rightarrow+Z+W W+$	7.8	6.9

Searches for New Physics: Exotics

CMS SEARCHES for NEW PHYSICS

for New Physics: Exotics

MSM Higgs search \& properties - "unofficial"combination

John Ellis and Tevong You:arXiv: I303.3879I [hep-ph] I5 Mar 2013

LOOKS LIKEA MSM HIGGS

near Future - present LHC schedule

```
2009
    LHC startup, }\sqrt{}{s}=900\textrm{GeV
V s=7~8 TeV, L=6\times10 33 cm-2 s-1, bunch spacing 50 ns
Go to design energy, nominal luminosity (Phase-0)
new Pixel B-layer \(V_{\mathrm{s}}=13 \sim 14 \mathrm{TeV}, \mathrm{L} \sim 1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\), bunch spacing 25 ns
Injector and LHC Phase-1 upgrade to full design luminosity
\(\sim 75-100 \mathrm{fb}-\) NSW, FTK \(\sqrt{ }=14 \mathrm{TeV}, \mathrm{L} \sim 2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\), bunch spacing 25 ns
HL-LHC Phase-2 upgrade, IR, crab cavities?
\[
\sqrt{ }=14 \mathrm{TeV}, \mathrm{~L}=5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \text {, luminosity levelling }
\]
```


Higgs boson properties

With the KNOWN mass of a new boson, the MSM couplings are calculable, and will be compared with the data

With ~300/fb- after Phase-I upgrade - the ratios of couplings will be known to within 30-50\%

Spin and parity will be known with $\sim 5 \sigma$ level

HHH couplings - maybe with 3000/fb

HHHH - perhaps not at LHC

ATLAS Preliminary (Simulation)
$\sqrt{\mathrm{s}}=14 \mathrm{TeV}: \int \mathrm{Ldt}=300 \mathrm{fb}^{-1} ; \int \mathrm{Ldt}=3000 \mathrm{fb}^{-1}$

ATLAS Preliminary (Simulation)
$\sqrt{\mathrm{s}}=14 \mathrm{TeV}: \int \mathrm{Ldt}=300 \mathrm{fb}^{-1} ; \int \mathrm{Ldt}=3000 \mathrm{fb}^{-1}$

NEW PHYSICS ? FUTURE?

Of course, with the energy increase from 8 TeV to $\sim 13 \mathrm{TeV}$, in addition to Higgs boson(s) studies, there will be another round of comprehensive searches for NMSSM and other "new physics".

This is what the physics goal of the LHC program is - to EXPLORE the new, previously unreachable, energies, and - in turn - new regions of phase space and model parameter spaces.

$$
\text { MORE DATA FROM } 2015 \text { at ~ } 13 \text { TEV }
$$

NEW PHYSICS ? FUTURE?

Finding the new boson is a great physics result, however, if it just looks like the minimal Standard Model Higgs boson - the simplest possible realization of the electroweak symmetry breaking - it will leave many unaswered questions - the fine tuning (gauge hierarchy problem) will still be with us

It is possible that with an increase of the pp collision energy from 8 TeV to 13 TeV we'll cross a threshold above which we'll observe new particles, too heavy to have been produced so far. This would be

If not, then perhaps we'll have to turn our attention to precise measurements of the branching fractions and properties of the Higgs boson, either at LHC, or at a new $\mathrm{e}^{+} \mathrm{e}^{-}$collider, a "cleaner" environment in which to study the MSM Higgs boson

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy Eb [GeV]	104.5	60	120	45.5	120	175
circumference [km]	26.7	26.7	26.7	80	80	80
beam current [mA]	4	100	7.2	1180	24.3	5.4
\#bunches/beam	4	2808	4	2625	80	12
\#e-/beam [10 ${ }^{12}$]	2.3	56	4.0	2000	40.5	9.0
horizontal emittance [nm]	48	5	25	30.8	9.4	20
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0
partition number J.	1.1	1.5	1.5	1.0	1.0	1.0
momentum comp. $\alpha_{6}\left[10^{-5}\right]$	18.5	8.1	8.1	9.0	1.0	1.0
SR power/beam [MW]	11	44	50	50	50	50
$\beta^{*}{ }_{\mathrm{x}}$ [m]	1.5	0.18	0.2	0.2	0.2	0.2
$\beta^{*}{ }_{y}[\mathrm{~cm}]$	5	10	0.1	0.1	0.1	0.1
$\sigma^{*}{ }_{x}[\mu \mathrm{~m}]$	270	30	71	78	43	63
$\sigma^{*}{ }_{y}[\mu \mathrm{~m}]$	3.5	16	0.32	0.39	0.22	0.32
hourglass $\mathrm{F}_{\text {bg }}$	0.98	0.99	0.67	0.71	0.75	0.65
$\Delta_{\text {ESR }}^{\text {loss }} / \text { turn }[\mathrm{GeV}]$	3.41	0.44	6.99	0.04	2.1	9.3
$\mathrm{V}_{\text {REtotot }}$ [GV]	3.64	0.5	12.0	2.0	6.0	12.0
$\delta_{\text {max, }, \text { FF }}$ [\%]	0.77	0.66	4.2	4.0	9.4	4.9
E/IP	0.025	N/A	0.09	0.12	0.10	0.05
$\xi_{y /} / \mathrm{IP}$	0.065	N/A	0.08	0.12	0.10	0.05
f_{5} [kHz]	1.6	0.65	3.91	1.29	0.44	0.43
$\mathrm{E}_{\text {acc }}[\mathrm{MV} / \mathrm{m}]$	7.5	11.9	20	20	20	20
eff. RF length [m]	485	42	600	100	300	600
f_{pF} [MHz]	352	721	1300	700	700	700
$\delta^{\text {SR }}{ }_{\text {ms }}$ [\%]	0.22	0.12	0.23	0.06	0.15	0.22
$0^{\text {SR }}$._._ [cml	1.61	0.69	0.23	0.19	0.17	0.25
$\mathrm{L} / \mathrm{P}\left[10^{32} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}\right]$	1.25	N/A	107	10335	490	65
number of IPs	4	1	2	2	2	2
Rad.Bhabha b.lifetime [min]	360	N/A	16	74	32	54
$\mathrm{r}_{\text {BS }}\left[10^{-4}\right]$	0.2	0.05	10	4	15	15
$\mathrm{n}_{\mathbf{W}} /$ collision	0.08	0.16	0.60	0.41	0.50	0.51
$\Delta 8^{\text {B5 }} / \mathrm{collision} \mathrm{[MeV]}$	0.1	0.02	33	3.6	42	61
$\Delta 8^{\text {as }} \mathrm{ms} /$ collision [MeV]	0.3	0.07	48	6.2	65	95

ILC Parameters

Bunch separation
Pulse current

Average total beam power
Estimated AC power
RMS bunch length
Electron RMS energy spread
Positron RMS energy spread
Electron polarisation
Positron polarisation
Horizontal emittance
Vertical emittance
IP horizontal beta function
IP vertical beta function (no TF)
IP RMS horizontal beam size
IP RMS veritcal beam size (no TF)
Luminosity (inc. waist shift)
Fraction of luminosity in top 1%
Average energy loss
Number of pairs per bunch crossing Total pair energy per bunch crossing

		Baseline	1st Stage	L Upgrade	TeV Upgrade		
		A			B		
$E_{C M}$	GeV		500	250	500	1000	1000
$f_{\text {rep }}$	Hz	5	5	5	4	4	
$f_{\text {linac }}$	Hz	5	10	5	4	4	
n_{b}		1312	1312	2625	2450	2450	
N	$\times 10^{10}$	2.0	2.0	2.0	1.74	1.74	
Δt_{b}	ns	554	554	366	366	366	
$I_{\text {beam }}$	mA	5.79	5.8	8.75	7.6	7.6	
$P_{\text {beam }}$	MW	10.5	5.2	21.0	27.2	27.2	
$P_{A C}$	MW	162	128	205	300	300	
σ_{z}	mm	0.3	0.3	0.3	0.250	0.225	
$\Delta p / p$	\%	0.124	0.190	0.124	0.083	0.085	
$\Delta p / p$	\%	0.070	0.152	0.070	0.043	0.047	
P_{-}	\%	80	80	80	80	80	
P_{+}	\%	30	30	30	20	20	
$\gamma \epsilon_{x}$	$\mu \mathrm{m}$	10	10	10	10	10	
$\gamma \epsilon_{y}$	nm	35	35	35	30	30	
β_{x}^{*}	mm	11.0	13.0	11.0	22.6	11.0	
β_{y}^{*}	mm	0.48	0.41	0.48	0.25	0.23	
σ_{x}^{*}	nm	474	729	474	481	335	
σ_{y}^{*}	nm	5.9	7.7	5.9	2.8	2.7	
L	$\times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	1.8	0.75	3.6	3.6	4.9	
$L_{0.01} / L$		58.3\%	87.1\%	58.3\%	59.2\%	44.5\%	
$\delta_{B S}$		4.5\%	0.97\%	4.5\%	5.6\%	10.5\%	
$N_{\text {pairs }}$	$\times 10^{3}$	139.0	62.4	139.0	200.5	382.6	
$E_{\text {pairs }}$	TeV	344.1	46.5	344.1	1338.0	3441.0	

The European Strategy for Particle Physics

- High Energy Frontier:

Based on the Physics Briefing Book CERN-ESG-005, 13 January 2013

Name	beams	collider geometry	Vs, TeV	luminosity	Operation (years)
HL-LHC	pp	circular	14	$3000 \mathrm{fb}^{-1}$	2024-2030
HE-LHC	pp	circular	26-33	100-300 fb-1/year	After 2035
VHE-LHC	pp	circular	40-100	-	After 2035
LEP3	$\mathrm{e}^{+} \mathrm{e}^{-}$	circular	0.240	$1 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	After 2024
ILC	$\mathrm{e}^{+} \mathrm{e}^{-}$	linear	$0.250 \rightarrow 1.0$	$\sim 1 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	~ 2030
CLIC	$\mathrm{e}^{+} \mathrm{e}^{-}$	linear	$0.500 \rightarrow 3.0$	$2-6 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	After 2030
TLEP	$\mathrm{e}^{+} \mathrm{e}^{-}$	circular	0.24-0.350	$5 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	After 2035
LHeC	$\mathrm{e}^{-}\left(\mathrm{e}^{+}\right) \mathrm{p}$	circular		O(100 fb-1)	After 2022
$\gamma \gamma$-collider	$\gamma \gamma$?
μ-collider	$\mu^{+} \mu^{-}$	circular			?

NEW PHYSICS ? FUTURE?

With the energy increase from 8 TeV to $\sim 13 \mathrm{TeV}$, in addition to Higgs boson(s) studies, there will be another round of comprehensive searches for NMSSM and other "new physics".

It is possible that with an increase of the pp collision energy from 8 TeV to 13 TeV we'll cross a threshold above which we'll observe new particles, too heavy to have been produced so far. This would be

This is what the physics goal of the LHC program is - to EXPLORE the new, previously unreachable, energies, and - in turn - new regions of phase space and model parameter spaces.

MORE DATA FROM 2015 at ~13 TEV

[^0]: Tufts Colloquium, May 3rd, 2013

[^1]: Limits $(95 \% C L): M\left(Z^{\prime}\right)>2.79 \mathrm{TeV}(e e) ; M\left(Z^{\prime}\right)>2.48 \mathrm{TeV}(\mu \mu) ; M\left(Z^{\prime}\right)>2.86 \mathrm{TeV}$ (combined) $M\left(W^{\prime}\right)>1.18 \mathrm{TeV}$

[^2]: Tufts Colloquium, May 3rd, 2013

[^3]: R.J. Barlow, "Event Classification Using Weighting Methods", J. Comput. Phys. 72 (1987) 202

